Skip to content

Commit 4c8bff3

Browse files
authored
Merge pull request #51 from crowsonkb/main
Add PLMS sampling and do one 2x size batch per sampling step
2 parents 71ebe40 + add3f1b commit 4c8bff3

File tree

4 files changed

+256
-5
lines changed

4 files changed

+256
-5
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -57,6 +57,7 @@ Quality, sampling speed and diversity are best controlled via the `scale`, `ddim
5757
As a rule of thumb, higher values of `scale` produce better samples at the cost of a reduced output diversity.
5858
Furthermore, increasing `ddim_steps` generally also gives higher quality samples, but returns are diminishing for values > 250.
5959
Fast sampling (i.e. low values of `ddim_steps`) while retaining good quality can be achieved by using `--ddim_eta 0.0`.
60+
Faster sampling (i.e. even lower values of `ddim_steps`) while retaining good quality can be achieved by using `--ddim_eta 0.0` and `--plms` (see [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778)).
6061

6162
#### Beyond 256²
6263

ldm/models/diffusion/ddim.py

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -166,11 +166,14 @@ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=F
166166
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
167167
unconditional_guidance_scale=1., unconditional_conditioning=None):
168168
b, *_, device = *x.shape, x.device
169-
e_t = self.model.apply_model(x, t, c)
170169

171-
if unconditional_guidance_scale != 1.:
172-
assert unconditional_conditioning is not None
173-
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning)
170+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
171+
e_t = self.model.apply_model(x, t, c)
172+
else:
173+
x_in = torch.cat([x] * 2)
174+
t_in = torch.cat([t] * 2)
175+
c_in = torch.cat([unconditional_conditioning, c])
176+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
174177
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
175178

176179
if score_corrector is not None:

ldm/models/diffusion/plms.py

Lines changed: 236 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,236 @@
1+
"""SAMPLING ONLY."""
2+
3+
import torch
4+
import numpy as np
5+
from tqdm import tqdm
6+
from functools import partial
7+
8+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9+
10+
11+
class PLMSSampler(object):
12+
def __init__(self, model, schedule="linear", **kwargs):
13+
super().__init__()
14+
self.model = model
15+
self.ddpm_num_timesteps = model.num_timesteps
16+
self.schedule = schedule
17+
18+
def register_buffer(self, name, attr):
19+
if type(attr) == torch.Tensor:
20+
if attr.device != torch.device("cuda"):
21+
attr = attr.to(torch.device("cuda"))
22+
setattr(self, name, attr)
23+
24+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
25+
if ddim_eta != 0:
26+
raise ValueError('ddim_eta must be 0 for PLMS')
27+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
28+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
29+
alphas_cumprod = self.model.alphas_cumprod
30+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
31+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
32+
33+
self.register_buffer('betas', to_torch(self.model.betas))
34+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
35+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
36+
37+
# calculations for diffusion q(x_t | x_{t-1}) and others
38+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
39+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
40+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
41+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
42+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
43+
44+
# ddim sampling parameters
45+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
46+
ddim_timesteps=self.ddim_timesteps,
47+
eta=ddim_eta,verbose=verbose)
48+
self.register_buffer('ddim_sigmas', ddim_sigmas)
49+
self.register_buffer('ddim_alphas', ddim_alphas)
50+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
51+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
52+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
53+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
54+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
55+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
56+
57+
@torch.no_grad()
58+
def sample(self,
59+
S,
60+
batch_size,
61+
shape,
62+
conditioning=None,
63+
callback=None,
64+
normals_sequence=None,
65+
img_callback=None,
66+
quantize_x0=False,
67+
eta=0.,
68+
mask=None,
69+
x0=None,
70+
temperature=1.,
71+
noise_dropout=0.,
72+
score_corrector=None,
73+
corrector_kwargs=None,
74+
verbose=True,
75+
x_T=None,
76+
log_every_t=100,
77+
unconditional_guidance_scale=1.,
78+
unconditional_conditioning=None,
79+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
80+
**kwargs
81+
):
82+
if conditioning is not None:
83+
if isinstance(conditioning, dict):
84+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
85+
if cbs != batch_size:
86+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87+
else:
88+
if conditioning.shape[0] != batch_size:
89+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
90+
91+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
92+
# sampling
93+
C, H, W = shape
94+
size = (batch_size, C, H, W)
95+
print(f'Data shape for PLMS sampling is {size}')
96+
97+
samples, intermediates = self.plms_sampling(conditioning, size,
98+
callback=callback,
99+
img_callback=img_callback,
100+
quantize_denoised=quantize_x0,
101+
mask=mask, x0=x0,
102+
ddim_use_original_steps=False,
103+
noise_dropout=noise_dropout,
104+
temperature=temperature,
105+
score_corrector=score_corrector,
106+
corrector_kwargs=corrector_kwargs,
107+
x_T=x_T,
108+
log_every_t=log_every_t,
109+
unconditional_guidance_scale=unconditional_guidance_scale,
110+
unconditional_conditioning=unconditional_conditioning,
111+
)
112+
return samples, intermediates
113+
114+
@torch.no_grad()
115+
def plms_sampling(self, cond, shape,
116+
x_T=None, ddim_use_original_steps=False,
117+
callback=None, timesteps=None, quantize_denoised=False,
118+
mask=None, x0=None, img_callback=None, log_every_t=100,
119+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
120+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
121+
device = self.model.betas.device
122+
b = shape[0]
123+
if x_T is None:
124+
img = torch.randn(shape, device=device)
125+
else:
126+
img = x_T
127+
128+
if timesteps is None:
129+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
130+
elif timesteps is not None and not ddim_use_original_steps:
131+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
132+
timesteps = self.ddim_timesteps[:subset_end]
133+
134+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
135+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
136+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
137+
print(f"Running PLMS Sampling with {total_steps} timesteps")
138+
139+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
140+
old_eps = []
141+
142+
for i, step in enumerate(iterator):
143+
index = total_steps - i - 1
144+
ts = torch.full((b,), step, device=device, dtype=torch.long)
145+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
146+
147+
if mask is not None:
148+
assert x0 is not None
149+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
150+
img = img_orig * mask + (1. - mask) * img
151+
152+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
153+
quantize_denoised=quantize_denoised, temperature=temperature,
154+
noise_dropout=noise_dropout, score_corrector=score_corrector,
155+
corrector_kwargs=corrector_kwargs,
156+
unconditional_guidance_scale=unconditional_guidance_scale,
157+
unconditional_conditioning=unconditional_conditioning,
158+
old_eps=old_eps, t_next=ts_next)
159+
img, pred_x0, e_t = outs
160+
old_eps.append(e_t)
161+
if len(old_eps) >= 4:
162+
old_eps.pop(0)
163+
if callback: callback(i)
164+
if img_callback: img_callback(pred_x0, i)
165+
166+
if index % log_every_t == 0 or index == total_steps - 1:
167+
intermediates['x_inter'].append(img)
168+
intermediates['pred_x0'].append(pred_x0)
169+
170+
return img, intermediates
171+
172+
@torch.no_grad()
173+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
174+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
175+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
176+
b, *_, device = *x.shape, x.device
177+
178+
def get_model_output(x, t):
179+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
180+
e_t = self.model.apply_model(x, t, c)
181+
else:
182+
x_in = torch.cat([x] * 2)
183+
t_in = torch.cat([t] * 2)
184+
c_in = torch.cat([unconditional_conditioning, c])
185+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
186+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
187+
188+
if score_corrector is not None:
189+
assert self.model.parameterization == "eps"
190+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
191+
192+
return e_t
193+
194+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
195+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
196+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
197+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
198+
199+
def get_x_prev_and_pred_x0(e_t, index):
200+
# select parameters corresponding to the currently considered timestep
201+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
202+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
203+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
204+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
205+
206+
# current prediction for x_0
207+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
208+
if quantize_denoised:
209+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
210+
# direction pointing to x_t
211+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
212+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
213+
if noise_dropout > 0.:
214+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
215+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
216+
return x_prev, pred_x0
217+
218+
e_t = get_model_output(x, t)
219+
if len(old_eps) == 0:
220+
# Pseudo Improved Euler (2nd order)
221+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
222+
e_t_next = get_model_output(x_prev, t_next)
223+
e_t_prime = (e_t + e_t_next) / 2
224+
elif len(old_eps) == 1:
225+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
226+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
227+
elif len(old_eps) == 2:
228+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
229+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
230+
elif len(old_eps) >= 3:
231+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
232+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
233+
234+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
235+
236+
return x_prev, pred_x0, e_t

scripts/txt2img.py

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@
99

1010
from ldm.util import instantiate_from_config
1111
from ldm.models.diffusion.ddim import DDIMSampler
12+
from ldm.models.diffusion.plms import PLMSSampler
1213

1314

1415
def load_model_from_config(config, ckpt, verbose=False):
@@ -54,6 +55,12 @@ def load_model_from_config(config, ckpt, verbose=False):
5455
help="number of ddim sampling steps",
5556
)
5657

58+
parser.add_argument(
59+
"--plms",
60+
action='store_true',
61+
help="use plms sampling",
62+
)
63+
5764
parser.add_argument(
5865
"--ddim_eta",
5966
type=float,
@@ -102,7 +109,11 @@ def load_model_from_config(config, ckpt, verbose=False):
102109

103110
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
104111
model = model.to(device)
105-
sampler = DDIMSampler(model)
112+
113+
if opt.plms:
114+
sampler = PLMSSampler(model)
115+
else:
116+
sampler = DDIMSampler(model)
106117

107118
os.makedirs(opt.outdir, exist_ok=True)
108119
outpath = opt.outdir

0 commit comments

Comments
 (0)