|
| 1 | +import operator |
| 2 | + |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +import pandas as pd |
| 6 | +from pandas.core.arrays import ExtensionArray |
| 7 | + |
| 8 | +from ._utils import refactorize |
| 9 | + |
| 10 | + |
| 11 | +class NumPyBackedExtensionArrayMixin(ExtensionArray): |
| 12 | + @property |
| 13 | + def dtype(self): |
| 14 | + """The dtype for this extension array, IPType""" |
| 15 | + return self._dtype |
| 16 | + |
| 17 | + @classmethod |
| 18 | + def _constructor_from_sequence(cls, scalars): |
| 19 | + return cls(scalars) |
| 20 | + |
| 21 | + @property |
| 22 | + def shape(self): |
| 23 | + return (len(self.data),) |
| 24 | + |
| 25 | + def __len__(self): |
| 26 | + return len(self.data) |
| 27 | + |
| 28 | + def __getitem__(self, *args): |
| 29 | + result = operator.getitem(self.data, *args) |
| 30 | + if isinstance(result, tuple): |
| 31 | + return self._box_scalar(result) |
| 32 | + elif result.ndim == 0: |
| 33 | + return self._box_scalar(result.item()) |
| 34 | + else: |
| 35 | + return type(self)(result) |
| 36 | + |
| 37 | + def setitem(self, indexer, value): |
| 38 | + """Set the 'value' inplace. |
| 39 | + """ |
| 40 | + # I think having a separate than __setitem__ is good |
| 41 | + # since we have to return here, but __setitem__ doesn't. |
| 42 | + self[indexer] = value |
| 43 | + return self |
| 44 | + |
| 45 | + @property |
| 46 | + def nbytes(self): |
| 47 | + return self._itemsize * len(self) |
| 48 | + |
| 49 | + def _formatting_values(self): |
| 50 | + return np.array(self._format_values(), dtype='object') |
| 51 | + |
| 52 | + def copy(self, deep=False): |
| 53 | + return type(self)(self.data.copy()) |
| 54 | + |
| 55 | + @classmethod |
| 56 | + def _concat_same_type(cls, to_concat): |
| 57 | + return cls(np.concatenate([array.data for array in to_concat])) |
| 58 | + |
| 59 | + def tolist(self): |
| 60 | + return self.data.tolist() |
| 61 | + |
| 62 | + def argsort(self, axis=-1, kind='quicksort', order=None): |
| 63 | + return self.data.argsort() |
| 64 | + |
| 65 | + def unique(self): |
| 66 | + # type: () -> ExtensionArray |
| 67 | + # https://github.com/pandas-dev/pandas/pull/19869 |
| 68 | + _, indices = np.unique(self.data, return_index=True) |
| 69 | + data = self.data.take(np.sort(indices)) |
| 70 | + return self._from_ndarray(data) |
| 71 | + |
| 72 | + def factorize(self, na_sentinel=-1): |
| 73 | + """Factorize an IPArray into integer labels and unique values. |
| 74 | +
|
| 75 | + Calling :meth:`pandas.Series.factorize` or :meth:`pandas.factorize` |
| 76 | + will dispatch to this method. |
| 77 | +
|
| 78 | + Parameters |
| 79 | + ---------- |
| 80 | + na_sentinel : int, default -1 |
| 81 | + The value in `labels` to use for indicating missing values in |
| 82 | + `self`. |
| 83 | +
|
| 84 | + Returns |
| 85 | + ------- |
| 86 | + labels : ndarray |
| 87 | + An integer-type ndarray the same length as `self`. Each newly- |
| 88 | + observed value in `self` will be assigned the next integer. |
| 89 | + Missing values in self are assigned `na_sentinel`. |
| 90 | + uniques : IPArray |
| 91 | + The unique values in `self` in order of appereance, not including |
| 92 | + the missing value ``IPv4Address('0.0.0.0')``. |
| 93 | +
|
| 94 | + See Also |
| 95 | + -------- |
| 96 | + pandas.factorize, pandas.Series.factorize |
| 97 | +
|
| 98 | + Examples |
| 99 | + -------- |
| 100 | + >>> arr = IPArray([2, 2, 0, 1, 2, 2**64 + 1]) |
| 101 | + >>> arr |
| 102 | + IPArray(['0.0.0.2', '0.0.0.2', '0.0.0.0', '0.0.0.1', |
| 103 | + '0.0.0.2', '::1:0:0:0:1']) |
| 104 | +
|
| 105 | + >>> labels, uniques = arr.factorize() |
| 106 | + >>> labels |
| 107 | + array([ 0, 0, -1, 1, 0, 2]) |
| 108 | +
|
| 109 | + Notice that `uniques` does not include the missing value. |
| 110 | + >>> uniques |
| 111 | + IPArray(['0.0.0.2', '0.0.0.1', '::1:0:0:0:1']) |
| 112 | + """ |
| 113 | + # OK, so here's the plan. |
| 114 | + # Start with factorizing `self.data`, which has two unfortunate issues |
| 115 | + # 1. Requires casting to object. |
| 116 | + # 2. Gets the NA logic wrong, since (0, 0) isn't NA to pandas. |
| 117 | + # For now, we can't help with 1. Maybe someday. |
| 118 | + # For 2, we can "fix" things with a little post-factorization cleanup. |
| 119 | + l, u = pd.factorize(self.data) |
| 120 | + mask = self.isna() |
| 121 | + any_na = mask.any() |
| 122 | + |
| 123 | + if any_na: |
| 124 | + first_na = mask.argmax() |
| 125 | + refactorize(l, first_na, na_sentinel=na_sentinel) # inplace op |
| 126 | + |
| 127 | + # u is an ndarray of tuples. Go to our record type, then an IPArray |
| 128 | + u2 = type(self)((u.astype(self.dtype._record_type))) |
| 129 | + # May have a missing value. |
| 130 | + if any_na: |
| 131 | + u2 = u2[~u2.isna()] |
| 132 | + return l, u2 |
0 commit comments