Skip to content

Commit cedb6ae

Browse files
GregoryComerfacebook-github-bot
authored andcommitted
Support channels_last format in portable upsample kernels (pytorch#9526)
Summary: Support channels_last input format in portable CPU upsample_bilinear2d and upsample_nearest2d kernels. This is useful for resize-in-model patterns when the user wants to pass inputs in channels_last format. It also (theoretically) allows for more effective auto-vectorization when vectorizing along the channels dim when there are a larger number of channels. I considered generalizing the kernel to handle arbitrary dim order, but having a specialized channels last version allows for traversing the output in contiguous order. I could add a separate, arbitrarily-strided variant, but we can take that as a follow-up if needed. To accomplish this, this PR makes the following changes: - Update `check_upsample_2d_common_args` to relax the dim order restriction. It now allows for both default and channels_last dim order and verifies that the output dim order matches the input. - In the upsample kernels (bilinear and nearest), split out NCHW and NHWC variants. The NHWC variant interchanges the loop order as to maintain contiguous output accesses. - Add test coverage to ensure ATen numerical parity. Reviewed By: manuelcandales Differential Revision: D71690379
1 parent 306b649 commit cedb6ae

8 files changed

+345
-8
lines changed

kernels/portable/cpu/op_upsample_bilinear2d.cpp

Lines changed: 89 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ using executorch::aten::SizesType;
2020

2121
namespace {
2222
template <typename CTYPE>
23-
void upsample_bilinear2d_kernel_impl(
23+
void upsample_bilinear2d_kernel_impl_nchw(
2424
const Tensor& in,
2525
bool align_corners,
2626
const float scale_h,
@@ -86,6 +86,92 @@ void upsample_bilinear2d_kernel_impl(
8686
}
8787
}
8888
}
89+
90+
template <typename CTYPE>
91+
void upsample_bilinear2d_kernel_impl_nhwc(
92+
const Tensor& in,
93+
bool align_corners,
94+
const float scale_h,
95+
const float scale_w,
96+
Tensor& out) {
97+
const auto in_data = in.const_data_ptr<CTYPE>();
98+
auto out_data = out.mutable_data_ptr<CTYPE>();
99+
100+
for ([[maybe_unused]] const auto n : c10::irange(out.size(0))) {
101+
for (const auto h : c10::irange(out.size(2))) {
102+
// Compute source index and weights.
103+
int64_t in_h1, in_h2;
104+
float weight_h, inv_weight_h;
105+
106+
compute_source_index_and_lambda(
107+
in_h1,
108+
in_h2,
109+
weight_h,
110+
inv_weight_h,
111+
scale_h,
112+
h,
113+
in.sizes()[2],
114+
out.sizes()[2],
115+
align_corners);
116+
117+
for (const auto w : c10::irange(out.size(3))) {
118+
int64_t in_w1, in_w2;
119+
float weight_w, inv_weight_w;
120+
121+
compute_source_index_and_lambda(
122+
in_w1,
123+
in_w2,
124+
weight_w,
125+
inv_weight_w,
126+
scale_w,
127+
w,
128+
in.sizes()[3],
129+
out.sizes()[3],
130+
align_corners);
131+
132+
for ([[maybe_unused]] const auto c : c10::irange(out.size(1))) {
133+
const auto top_left =
134+
in_data[in_h1 * in.strides()[2] + in_w1 * in.strides()[3] + c * in.strides()[1]];
135+
const auto top_right =
136+
in_data[in_h1 * in.strides()[2] + in_w2 * in.strides()[3] + c * in.strides()[1]];
137+
const auto bottom_left =
138+
in_data[in_h2 * in.strides()[2] + in_w1 * in.strides()[3] + c * in.strides()[1]];
139+
const auto bottom_right =
140+
in_data[in_h2 * in.strides()[2] + in_w2 * in.strides()[3] + c * in.strides()[1]];
141+
142+
const auto top = top_left * weight_w + top_right * inv_weight_w;
143+
const auto bottom =
144+
bottom_left * weight_w + bottom_right * inv_weight_w;
145+
const auto val = top * weight_h + bottom * inv_weight_h;
146+
147+
*out_data = val;
148+
out_data++;
149+
}
150+
}
151+
}
152+
}
153+
}
154+
155+
template <typename CTYPE>
156+
void upsample_bilinear2d_kernel_impl(
157+
KernelRuntimeContext& ctx,
158+
const Tensor& in,
159+
bool align_corners,
160+
const float scale_h,
161+
const float scale_w,
162+
Tensor& out) {
163+
if (is_contiguous_dim_order(in.dim_order().data(), in.dim_order().size())) {
164+
upsample_bilinear2d_kernel_impl_nchw<CTYPE>(
165+
in, align_corners, scale_h, scale_w, out);
166+
} else if (is_channels_last_dim_order(in.dim_order().data(), in.dim_order().size())) {
167+
upsample_bilinear2d_kernel_impl_nhwc<CTYPE>(
168+
in, align_corners, scale_h, scale_w, out);
169+
} else {
170+
// Shouldn't be reachable because of args checks, but just in case.
171+
ET_LOG(Error, "Unsupported dim order");
172+
ctx.fail(Error::InvalidArgument);
173+
}
174+
}
89175
} // namespace
90176

91177
// Signatures are auto-generated, so disable pass-by-value lint.
@@ -101,7 +187,7 @@ Tensor& upsample_bilinear2d_vec_out(
101187
// Preconditions (checked in check_..._args):
102188
// In and out tensors have same dtype.
103189
// In and out tensors are rank 4 and have same dim[0] and dim[1].
104-
// In and out tensors are default dim order (NCHW).
190+
// In and out tensors are NHWC or NCHW dim order.
105191
ET_KERNEL_CHECK(
106192
ctx,
107193
check_upsample_bilinear2d_args(
@@ -127,7 +213,7 @@ Tensor& upsample_bilinear2d_vec_out(
127213
ET_SWITCH_REALHBF16_TYPES(
128214
in.scalar_type(), ctx, "upsample_bilinear2d.out", CTYPE, [&]() {
129215
upsample_bilinear2d_kernel_impl<CTYPE>(
130-
in, align_corners, kernel_scale_h, kernel_scale_w, out);
216+
ctx, in, align_corners, kernel_scale_h, kernel_scale_w, out);
131217
});
132218

133219
return out;

kernels/portable/cpu/op_upsample_nearest2d.cpp

Lines changed: 50 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ using executorch::aten::SizesType;
1919

2020
namespace {
2121
template <typename CTYPE>
22-
void upsample_nearest2d_kernel_impl(
22+
void upsample_nearest2d_kernel_impl_nchw(
2323
const Tensor& in,
2424
const float scale_h,
2525
const float scale_w,
@@ -46,6 +46,54 @@ void upsample_nearest2d_kernel_impl(
4646
}
4747
}
4848
}
49+
50+
template <typename CTYPE>
51+
void upsample_nearest2d_kernel_impl_nhwc(
52+
const Tensor& in,
53+
const float scale_h,
54+
const float scale_w,
55+
Tensor& out) {
56+
const auto in_data = in.const_data_ptr<CTYPE>();
57+
auto out_data = out.mutable_data_ptr<CTYPE>();
58+
59+
exit(-1);
60+
61+
for (auto n = 0; n < out.size(0); n++) {
62+
for (auto h = 0; h < out.size(2); h++) {
63+
const auto in_h =
64+
nearest_neighbor_compute_source_index(scale_h, h, in.sizes()[2]);
65+
for (auto w = 0; w < out.size(3); w++) {
66+
const auto in_w =
67+
nearest_neighbor_compute_source_index(scale_w, w, in.sizes()[3]);
68+
for (auto c = 0; c < out.size(1); c++) {
69+
*out_data = in_data[in_h * in.strides()[2] + in_w * in.strides()[3] + c * in.strides()[1]];
70+
out_data++;
71+
}
72+
}
73+
}
74+
}
75+
}
76+
77+
template <typename CTYPE>
78+
void upsample_nearest2d_kernel_impl(
79+
KernelRuntimeContext& ctx,
80+
const Tensor& in,
81+
const float scale_h,
82+
const float scale_w,
83+
Tensor& out) {
84+
if (is_contiguous_dim_order(in.dim_order().data(), in.dim_order().size())) {
85+
upsample_nearest2d_kernel_impl_nchw<CTYPE>(
86+
in, scale_h, scale_w, out);
87+
} else if (is_channels_last_dim_order(in.dim_order().data(), in.dim_order().size())) {
88+
upsample_nearest2d_kernel_impl_nhwc<CTYPE>(
89+
in, scale_h, scale_w, out);
90+
} else {
91+
// Shouldn't be reachable because of args checks, but just in case.
92+
ET_LOG(Error, "Unsupported dim order");
93+
ctx.fail(Error::InvalidArgument);
94+
}
95+
96+
}
4997
} // namespace
5098

5199
Tensor& upsample_nearest2d_vec_out(
@@ -82,7 +130,7 @@ Tensor& upsample_nearest2d_vec_out(
82130
ET_SWITCH_REALHBF16_TYPES(
83131
in.scalar_type(), ctx, "upsample_nearest2d.out", CTYPE, [&]() {
84132
upsample_nearest2d_kernel_impl<CTYPE>(
85-
in, kernel_scale_h, kernel_scale_w, out);
133+
ctx, in, kernel_scale_h, kernel_scale_w, out);
86134
});
87135

88136
return out;

kernels/portable/cpu/util/upsample_util.cpp

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,10 +18,11 @@ bool check_upsample_2d_common_args(
1818
const executorch::aten::OptionalArrayRef<double>& scale_factors,
1919
Tensor& out) {
2020
ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(in, out));
21+
ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dim_order(in, out));
2122
ET_LOG_AND_RETURN_IF_FALSE(in.dim() == 4);
2223
ET_LOG_AND_RETURN_IF_FALSE(out.dim() == 4);
23-
ET_LOG_AND_RETURN_IF_FALSE(tensor_is_default_dim_order(in));
24-
ET_LOG_AND_RETURN_IF_FALSE(tensor_is_default_dim_order(out));
24+
ET_LOG_AND_RETURN_IF_FALSE(tensor_is_default_or_channels_last_dim_order(in));
25+
ET_LOG_AND_RETURN_IF_FALSE(tensor_is_default_or_channels_last_dim_order(out));
2526
ET_LOG_AND_RETURN_IF_FALSE(
2627
output_size.has_value() ^ scale_factors.has_value());
2728
if (scale_factors.has_value()) {

kernels/portable/test/op_upsample_bilinear2d_test.py

Lines changed: 43 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -63,6 +63,26 @@ def test_upsample_bilinear2d_aten_parity_f32(self):
6363
input, scale_factors=(out_h / h, out_w / w), align_corners=align_corners
6464
)
6565

66+
def test_upsample_bilinear2d_aten_parity_f32_channels_last(self):
67+
N = [1, 2]
68+
C = [1, 3]
69+
H = [1, 3, 50, 1001]
70+
W = [1, 2, 62, 1237]
71+
OUT_H = [5, 21]
72+
OUT_W = [7, 31]
73+
ALIGN_CORNERS = [True, False]
74+
75+
for n, c, h, w, out_h, out_w, align_corners in itertools.product(
76+
N, C, H, W, OUT_H, OUT_W, ALIGN_CORNERS
77+
):
78+
input = torch.randn(n, c, h, w).to(memory_format=torch.channels_last)
79+
self.run_upsample_test(
80+
input, output_size=(out_h, out_w), align_corners=align_corners
81+
)
82+
self.run_upsample_test(
83+
input, scale_factors=(out_h / h, out_w / w), align_corners=align_corners
84+
)
85+
6686
def test_upsample_bilinear2d_aten_parity_u8(self):
6787
N = [1, 2]
6888
C = [1, 3]
@@ -85,3 +105,26 @@ def test_upsample_bilinear2d_aten_parity_u8(self):
85105
align_corners=align_corners,
86106
atol=2,
87107
)
108+
109+
def test_upsample_bilinear2d_aten_parity_u8_channels_last(self):
110+
N = [1, 2]
111+
C = [1, 3]
112+
H = [1, 3, 50, 1001]
113+
W = [1, 2, 62, 1237]
114+
OUT_H = [5, 21]
115+
OUT_W = [7, 31]
116+
ALIGN_CORNERS = [True, False]
117+
118+
for n, c, h, w, out_h, out_w, align_corners in itertools.product(
119+
N, C, H, W, OUT_H, OUT_W, ALIGN_CORNERS
120+
):
121+
input = torch.randint(0, 255, (n, c, h, w), dtype=torch.uint8).to(memory_format=torch.channels_last)
122+
self.run_upsample_test(
123+
input, output_size=(out_h, out_w), align_corners=align_corners, atol=2
124+
)
125+
self.run_upsample_test(
126+
input,
127+
scale_factors=(out_h / h, out_w / w),
128+
align_corners=align_corners,
129+
atol=2,
130+
)

kernels/portable/test/op_upsample_nearest2d_test.py

Lines changed: 33 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -69,3 +69,36 @@ def test_upsample_nearest2d_aten_parity_u8(self):
6969
scale_factors=(out_h / h, out_w / w),
7070
atol=2,
7171
)
72+
73+
def test_upsample_nearest2d_aten_parity_f32_channels_last(self):
74+
N = [1, 2]
75+
C = [1, 3]
76+
H = [1, 3, 50, 1001]
77+
W = [1, 2, 62, 1237]
78+
OUT_H = [5, 21]
79+
OUT_W = [7, 31]
80+
81+
for n, c, h, w, out_h, out_w in itertools.product(N, C, H, W, OUT_H, OUT_W):
82+
input = torch.randn(n, c, h, w).to(memory_format=torch.channels_last)
83+
self.run_upsample_test(input, output_size=(out_h, out_w))
84+
self.run_upsample_test(input, scale_factors=(out_h / h, out_w / w))
85+
86+
def test_upsample_nearest2d_aten_parity_u8_channels_last(self):
87+
N = [1, 2]
88+
C = [1, 3]
89+
H = [1, 3, 50, 1001]
90+
W = [1, 2, 62, 1237]
91+
OUT_H = [5, 21]
92+
OUT_W = [7, 31]
93+
94+
for n, c, h, w, out_h, out_w in itertools.product(N, C, H, W, OUT_H, OUT_W):
95+
input = torch.randint(0, 255, (n, c, h, w), dtype=torch.uint8).to(
96+
memory_format=torch.channels_last
97+
)
98+
self.run_upsample_test(input, output_size=(out_h, out_w), atol=1)
99+
self.run_upsample_test(
100+
input,
101+
scale_factors=(out_h / h, out_w / w),
102+
atol=2,
103+
)
104+

kernels/test/op_upsample_bilinear2d_test.cpp

Lines changed: 74 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -468,6 +468,24 @@ TEST_F(OpUpsampleBilinear2dTest, ZeroComputedOutputSizeDies) {
468468
out));
469469
}
470470

471+
TEST_F(OpUpsampleBilinear2dTest, MismatchedDimOrderDies) {
472+
TensorFactory<ScalarType::Float> tf;
473+
474+
const auto input = tf.ones({1, 1, 1, 2});
475+
auto out = tf.zeros_channels_last({1, 1, 1, 4});
476+
std::array<double, 2> scale_factors = {2, 2};
477+
478+
ET_EXPECT_KERNEL_FAILURE(
479+
context_,
480+
op_upsample_bilinear2d_vec_out(
481+
input,
482+
{},
483+
false,
484+
OptionalArrayRef<double>(
485+
{scale_factors.data(), scale_factors.size()}),
486+
out));
487+
}
488+
471489
TEST_F(OpUpsampleBilinear2dTest, NumericsCheck) {
472490
TensorFactory<ScalarType::Float> tf;
473491

@@ -577,3 +595,59 @@ TEST_F(OpUpsampleBilinear2dTest, Simple5x1To4x1AlignCorners) {
577595

578596
EXPECT_TENSOR_CLOSE(out, expected);
579597
}
598+
599+
TEST_F(OpUpsampleBilinear2dTest, Simple1x2To1x4ChannelsLast) {
600+
TensorFactory<ScalarType::Float> tf;
601+
602+
const auto input = tf.make_channels_last({1, 1, 1, 2}, {1.0, 4.0});
603+
std::array<int64_t, 2> output_size = {1, 4};
604+
auto out = tf.zeros_channels_last({1, 1, 1, 4});
605+
606+
op_upsample_bilinear2d_vec_out(
607+
input,
608+
OptionalArrayRef<int64_t>({output_size.data(), output_size.size()}),
609+
false,
610+
{},
611+
out);
612+
613+
const auto expected = tf.make_channels_last({1, 1, 1, 4}, {1.0, 1.75, 3.25, 4.0});
614+
615+
EXPECT_TENSOR_EQ(out, expected);
616+
}
617+
618+
TEST_F(OpUpsampleBilinear2dTest, SmokeTestChannelsLast) {
619+
TensorFactory<ScalarType::Float> tf;
620+
621+
const auto input = tf.make_channels_last(
622+
{1, 2, 3, 4},
623+
{
624+
0.0, 12, 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7, 19, 8, 20,
625+
9, 21, 10, 22, 11, 23
626+
});
627+
std::array<int64_t, 2> output_size = {6, 8};
628+
auto out = tf.zeros_channels_last({1, 2, 6, 8});
629+
630+
op_upsample_bilinear2d_vec_out(
631+
input,
632+
OptionalArrayRef<int64_t>({output_size.data(), output_size.size()}),
633+
false,
634+
{},
635+
out);
636+
637+
const auto expected = tf.make_channels_last(
638+
{1, 2, 6, 8},
639+
{0.0000, 12.0000, 0.2500, 12.2500, 0.7500, 12.7500, 1.2500, 13.2500,
640+
1.7500, 13.7500, 2.2500, 14.2500, 2.7500, 14.7500, 3.0000, 15.0000,
641+
1.0000, 13.0000, 1.2500, 13.2500, 1.7500, 13.7500, 2.2500, 14.2500,
642+
2.7500, 14.7500, 3.2500, 15.2500, 3.7500, 15.7500, 4.0000, 16.0000,
643+
3.0000, 15.0000, 3.2500, 15.2500, 3.7500, 15.7500, 4.2500, 16.2500,
644+
4.7500, 16.7500, 5.2500, 17.2500, 5.7500, 17.7500, 6.0000, 18.0000,
645+
5.0000, 17.0000, 5.2500, 17.2500, 5.7500, 17.7500, 6.2500, 18.2500,
646+
6.7500, 18.7500, 7.2500, 19.2500, 7.7500, 19.7500, 8.0000, 20.0000,
647+
7.0000, 19.0000, 7.2500, 19.2500, 7.7500, 19.7500, 8.2500, 20.2500,
648+
8.7500, 20.7500, 9.2500, 21.2500, 9.7500, 21.7500, 10.0000, 22.0000,
649+
8.0000, 20.0000, 8.2500, 20.2500, 8.7500, 20.7500, 9.2500, 21.2500,
650+
9.7500, 21.7500, 10.2500, 22.2500, 10.7500, 22.7500, 11.0000, 23.0000});
651+
652+
EXPECT_TENSOR_CLOSE(out, expected);
653+
}

0 commit comments

Comments
 (0)