Skip to content

Commit e2f9e3b

Browse files
committed
Support channels_last format in portable upsample kernels (pytorch#9526)
Summary: Support channels_last input format in portable CPU upsample_bilinear2d and upsample_nearest2d kernels. This is useful for resize-in-model patterns when the user wants to pass inputs in channels_last format. It also (theoretically) allows for more effective auto-vectorization when vectorizing along the channels dim when there are a larger number of channels. I considered generalizing the kernel to handle arbitrary dim order, but having a specialized channels last version allows for traversing the output in contiguous order. I could add a separate, arbitrarily-strided variant, but we can take that as a follow-up if needed. To accomplish this, this PR makes the following changes: - Update `check_upsample_2d_common_args` to relax the dim order restriction. It now allows for both default and channels_last dim order and verifies that the output dim order matches the input. - In the upsample kernels (bilinear and nearest), split out NCHW and NHWC variants. The NHWC variant interchanges the loop order as to maintain contiguous output accesses. - Add test coverage to ensure ATen numerical parity. Differential Revision: D71690379
1 parent 20abf34 commit e2f9e3b

8 files changed

+363
-16
lines changed

kernels/portable/cpu/op_upsample_bilinear2d.cpp

Lines changed: 89 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ using executorch::aten::SizesType;
2020

2121
namespace {
2222
template <typename CTYPE>
23-
void upsample_bilinear2d_kernel_impl(
23+
void upsample_bilinear2d_kernel_impl_nchw(
2424
const Tensor& in,
2525
bool align_corners,
2626
const float scale_h,
@@ -86,6 +86,75 @@ void upsample_bilinear2d_kernel_impl(
8686
}
8787
}
8888
}
89+
90+
template <typename CTYPE>
91+
void upsample_bilinear2d_kernel_impl_nhwc(
92+
const Tensor& in,
93+
bool align_corners,
94+
const float scale_h,
95+
const float scale_w,
96+
Tensor& out) {
97+
const auto in_data = in.const_data_ptr<CTYPE>();
98+
auto out_data = out.mutable_data_ptr<CTYPE>();
99+
100+
for ([[maybe_unused]] const auto n : c10::irange(out.size(0))) {
101+
for (const auto h : c10::irange(out.size(2))) {
102+
// Compute source index and weights.
103+
int64_t in_h1, in_h2;
104+
float weight_h, inv_weight_h;
105+
106+
compute_source_index_and_lambda(
107+
in_h1,
108+
in_h2,
109+
weight_h,
110+
inv_weight_h,
111+
scale_h,
112+
h,
113+
in.sizes()[2],
114+
out.sizes()[2],
115+
align_corners);
116+
117+
for (const auto w : c10::irange(out.size(3))) {
118+
int64_t in_w1, in_w2;
119+
float weight_w, inv_weight_w;
120+
121+
compute_source_index_and_lambda(
122+
in_w1,
123+
in_w2,
124+
weight_w,
125+
inv_weight_w,
126+
scale_w,
127+
w,
128+
in.sizes()[3],
129+
out.sizes()[3],
130+
align_corners);
131+
132+
for ([[maybe_unused]] const auto c : c10::irange(out.size(1))) {
133+
const auto top_left = in_data
134+
[in_h1 * in.strides()[2] + in_w1 * in.strides()[3] +
135+
c * in.strides()[1]];
136+
const auto top_right = in_data
137+
[in_h1 * in.strides()[2] + in_w2 * in.strides()[3] +
138+
c * in.strides()[1]];
139+
const auto bottom_left = in_data
140+
[in_h2 * in.strides()[2] + in_w1 * in.strides()[3] +
141+
c * in.strides()[1]];
142+
const auto bottom_right = in_data
143+
[in_h2 * in.strides()[2] + in_w2 * in.strides()[3] +
144+
c * in.strides()[1]];
145+
146+
const auto top = top_left * weight_w + top_right * inv_weight_w;
147+
const auto bottom =
148+
bottom_left * weight_w + bottom_right * inv_weight_w;
149+
const auto val = top * weight_h + bottom * inv_weight_h;
150+
151+
*out_data = val;
152+
out_data++;
153+
}
154+
}
155+
}
156+
}
157+
}
89158
} // namespace
90159

91160
// Signatures are auto-generated, so disable pass-by-value lint.
@@ -101,7 +170,7 @@ Tensor& upsample_bilinear2d_vec_out(
101170
// Preconditions (checked in check_..._args):
102171
// In and out tensors have same dtype.
103172
// In and out tensors are rank 4 and have same dim[0] and dim[1].
104-
// In and out tensors are default dim order (NCHW).
173+
// In and out tensors are NHWC or NCHW dim order.
105174
ET_KERNEL_CHECK(
106175
ctx,
107176
check_upsample_bilinear2d_args(
@@ -124,11 +193,24 @@ Tensor& upsample_bilinear2d_vec_out(
124193
const auto kernel_scale_w = area_pixel_compute_scale<double>(
125194
in.sizes()[3], out.sizes()[3], align_corners, scale_w);
126195

127-
ET_SWITCH_REALHBF16_TYPES(
128-
in.scalar_type(), ctx, "upsample_bilinear2d.out", CTYPE, [&]() {
129-
upsample_bilinear2d_kernel_impl<CTYPE>(
130-
in, align_corners, kernel_scale_h, kernel_scale_w, out);
131-
});
196+
if (executorch::runtime::tensor_is_default_dim_order(in)) {
197+
ET_SWITCH_REALHBF16_TYPES(
198+
in.scalar_type(), ctx, "upsample_bilinear2d.out", CTYPE, [&]() {
199+
upsample_bilinear2d_kernel_impl_nchw<CTYPE>(
200+
in, align_corners, kernel_scale_h, kernel_scale_w, out);
201+
});
202+
} else if (executorch::runtime::tensor_is_channels_last_dim_order(in)) {
203+
ET_SWITCH_REALHBF16_TYPES(
204+
in.scalar_type(), ctx, "upsample_bilinear2d.out", CTYPE, [&]() {
205+
upsample_bilinear2d_kernel_impl_nhwc<CTYPE>(
206+
in, align_corners, kernel_scale_h, kernel_scale_w, out);
207+
});
208+
} else {
209+
// Shouldn't be reachable because of args checks, but just in case.
210+
ET_LOG(Error, "Unsupported dim order");
211+
ctx.fail(Error::InvalidArgument);
212+
return out;
213+
}
132214

133215
return out;
134216
}

kernels/portable/cpu/op_upsample_nearest2d.cpp

Lines changed: 46 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ using executorch::aten::SizesType;
1919

2020
namespace {
2121
template <typename CTYPE>
22-
void upsample_nearest2d_kernel_impl(
22+
void upsample_nearest2d_kernel_impl_nchw(
2323
const Tensor& in,
2424
const float scale_h,
2525
const float scale_w,
@@ -46,6 +46,33 @@ void upsample_nearest2d_kernel_impl(
4646
}
4747
}
4848
}
49+
50+
template <typename CTYPE>
51+
void upsample_nearest2d_kernel_impl_nhwc(
52+
const Tensor& in,
53+
const float scale_h,
54+
const float scale_w,
55+
Tensor& out) {
56+
const auto in_data = in.const_data_ptr<CTYPE>();
57+
auto out_data = out.mutable_data_ptr<CTYPE>();
58+
59+
for (auto n = 0; n < out.size(0); n++) {
60+
for (auto h = 0; h < out.size(2); h++) {
61+
const auto in_h =
62+
nearest_neighbor_compute_source_index(scale_h, h, in.sizes()[2]);
63+
for (auto w = 0; w < out.size(3); w++) {
64+
const auto in_w =
65+
nearest_neighbor_compute_source_index(scale_w, w, in.sizes()[3]);
66+
for (auto c = 0; c < out.size(1); c++) {
67+
*out_data = in_data
68+
[in_h * in.strides()[2] + in_w * in.strides()[3] +
69+
c * in.strides()[1]];
70+
out_data++;
71+
}
72+
}
73+
}
74+
}
75+
}
4976
} // namespace
5077

5178
Tensor& upsample_nearest2d_vec_out(
@@ -79,11 +106,24 @@ Tensor& upsample_nearest2d_vec_out(
79106
const auto kernel_scale_w = area_pixel_compute_scale<double>(
80107
in.sizes()[3], out.sizes()[3], false, scale_w);
81108

82-
ET_SWITCH_REALHBF16_TYPES(
83-
in.scalar_type(), ctx, "upsample_nearest2d.out", CTYPE, [&]() {
84-
upsample_nearest2d_kernel_impl<CTYPE>(
85-
in, kernel_scale_h, kernel_scale_w, out);
86-
});
109+
if (tensor_is_default_dim_order(in)) {
110+
ET_SWITCH_REALHBF16_TYPES(
111+
in.scalar_type(), ctx, "upsample_nearest2d.out", CTYPE, [&]() {
112+
upsample_nearest2d_kernel_impl_nchw<CTYPE>(
113+
in, kernel_scale_h, kernel_scale_w, out);
114+
});
115+
} else if (executorch::runtime::tensor_is_channels_last_dim_order(in)) {
116+
ET_SWITCH_REALHBF16_TYPES(
117+
in.scalar_type(), ctx, "upsample_nearest2d.out", CTYPE, [&]() {
118+
upsample_nearest2d_kernel_impl_nhwc<CTYPE>(
119+
in, kernel_scale_h, kernel_scale_w, out);
120+
});
121+
} else {
122+
// Shouldn't be reachable because of args checks, but just in case.
123+
ET_LOG(Error, "Unsupported dim order");
124+
ctx.fail(Error::InvalidArgument);
125+
return out;
126+
}
87127

88128
return out;
89129
}

kernels/portable/cpu/util/upsample_util.cpp

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,10 +18,11 @@ bool check_upsample_2d_common_args(
1818
const executorch::aten::OptionalArrayRef<double>& scale_factors,
1919
Tensor& out) {
2020
ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(in, out));
21+
ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dim_order(in, out));
2122
ET_LOG_AND_RETURN_IF_FALSE(in.dim() == 4);
2223
ET_LOG_AND_RETURN_IF_FALSE(out.dim() == 4);
23-
ET_LOG_AND_RETURN_IF_FALSE(tensor_is_default_dim_order(in));
24-
ET_LOG_AND_RETURN_IF_FALSE(tensor_is_default_dim_order(out));
24+
ET_LOG_AND_RETURN_IF_FALSE(tensor_is_default_or_channels_last_dim_order(in));
25+
ET_LOG_AND_RETURN_IF_FALSE(tensor_is_default_or_channels_last_dim_order(out));
2526
ET_LOG_AND_RETURN_IF_FALSE(
2627
output_size.has_value() ^ scale_factors.has_value());
2728
if (scale_factors.has_value()) {

kernels/portable/test/op_upsample_bilinear2d_test.py

Lines changed: 45 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -63,6 +63,26 @@ def test_upsample_bilinear2d_aten_parity_f32(self):
6363
input, scale_factors=(out_h / h, out_w / w), align_corners=align_corners
6464
)
6565

66+
def test_upsample_bilinear2d_aten_parity_f32_channels_last(self):
67+
N = [1, 2]
68+
C = [1, 3]
69+
H = [1, 3, 50, 1001]
70+
W = [1, 2, 62, 1237]
71+
OUT_H = [5, 21]
72+
OUT_W = [7, 31]
73+
ALIGN_CORNERS = [True, False]
74+
75+
for n, c, h, w, out_h, out_w, align_corners in itertools.product(
76+
N, C, H, W, OUT_H, OUT_W, ALIGN_CORNERS
77+
):
78+
input = torch.randn(n, c, h, w).to(memory_format=torch.channels_last)
79+
self.run_upsample_test(
80+
input, output_size=(out_h, out_w), align_corners=align_corners
81+
)
82+
self.run_upsample_test(
83+
input, scale_factors=(out_h / h, out_w / w), align_corners=align_corners
84+
)
85+
6686
def test_upsample_bilinear2d_aten_parity_u8(self):
6787
N = [1, 2]
6888
C = [1, 3]
@@ -85,3 +105,28 @@ def test_upsample_bilinear2d_aten_parity_u8(self):
85105
align_corners=align_corners,
86106
atol=2,
87107
)
108+
109+
def test_upsample_bilinear2d_aten_parity_u8_channels_last(self):
110+
N = [1, 2]
111+
C = [1, 3]
112+
H = [1, 3, 50, 1001]
113+
W = [1, 2, 62, 1237]
114+
OUT_H = [5, 21]
115+
OUT_W = [7, 31]
116+
ALIGN_CORNERS = [True, False]
117+
118+
for n, c, h, w, out_h, out_w, align_corners in itertools.product(
119+
N, C, H, W, OUT_H, OUT_W, ALIGN_CORNERS
120+
):
121+
input = torch.randint(0, 255, (n, c, h, w), dtype=torch.uint8).to(
122+
memory_format=torch.channels_last
123+
)
124+
self.run_upsample_test(
125+
input, output_size=(out_h, out_w), align_corners=align_corners, atol=2
126+
)
127+
self.run_upsample_test(
128+
input,
129+
scale_factors=(out_h / h, out_w / w),
130+
align_corners=align_corners,
131+
atol=2,
132+
)

kernels/portable/test/op_upsample_nearest2d_test.py

Lines changed: 32 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -69,3 +69,35 @@ def test_upsample_nearest2d_aten_parity_u8(self):
6969
scale_factors=(out_h / h, out_w / w),
7070
atol=2,
7171
)
72+
73+
def test_upsample_nearest2d_aten_parity_f32_channels_last(self):
74+
N = [1, 2]
75+
C = [1, 3]
76+
H = [1, 3, 50, 1001]
77+
W = [1, 2, 62, 1237]
78+
OUT_H = [5, 21]
79+
OUT_W = [7, 31]
80+
81+
for n, c, h, w, out_h, out_w in itertools.product(N, C, H, W, OUT_H, OUT_W):
82+
input = torch.randn(n, c, h, w).to(memory_format=torch.channels_last)
83+
self.run_upsample_test(input, output_size=(out_h, out_w))
84+
self.run_upsample_test(input, scale_factors=(out_h / h, out_w / w))
85+
86+
def test_upsample_nearest2d_aten_parity_u8_channels_last(self):
87+
N = [1, 2]
88+
C = [1, 3]
89+
H = [1, 3, 50, 1001]
90+
W = [1, 2, 62, 1237]
91+
OUT_H = [5, 21]
92+
OUT_W = [7, 31]
93+
94+
for n, c, h, w, out_h, out_w in itertools.product(N, C, H, W, OUT_H, OUT_W):
95+
input = torch.randint(0, 255, (n, c, h, w), dtype=torch.uint8).to(
96+
memory_format=torch.channels_last
97+
)
98+
self.run_upsample_test(input, output_size=(out_h, out_w), atol=1)
99+
self.run_upsample_test(
100+
input,
101+
scale_factors=(out_h / h, out_w / w),
102+
atol=2,
103+
)

kernels/test/op_upsample_bilinear2d_test.cpp

Lines changed: 76 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -468,6 +468,28 @@ TEST_F(OpUpsampleBilinear2dTest, ZeroComputedOutputSizeDies) {
468468
out));
469469
}
470470

471+
TEST_F(OpUpsampleBilinear2dTest, MismatchedDimOrderDies) {
472+
if (SupportedFeatures::get()->is_aten) {
473+
GTEST_SKIP() << "The current kernel supports mismatched dim order";
474+
}
475+
476+
TensorFactory<ScalarType::Float> tf;
477+
478+
const auto input = tf.ones({1, 1, 1, 2});
479+
auto out = tf.zeros_channels_last({1, 1, 2, 4});
480+
std::array<double, 2> scale_factors = {2, 2};
481+
482+
ET_EXPECT_KERNEL_FAILURE(
483+
context_,
484+
op_upsample_bilinear2d_vec_out(
485+
input,
486+
{},
487+
false,
488+
OptionalArrayRef<double>(
489+
{scale_factors.data(), scale_factors.size()}),
490+
out));
491+
}
492+
471493
TEST_F(OpUpsampleBilinear2dTest, NumericsCheck) {
472494
TensorFactory<ScalarType::Float> tf;
473495

@@ -577,3 +599,57 @@ TEST_F(OpUpsampleBilinear2dTest, Simple5x1To4x1AlignCorners) {
577599

578600
EXPECT_TENSOR_CLOSE(out, expected);
579601
}
602+
603+
TEST_F(OpUpsampleBilinear2dTest, Simple1x2To1x4ChannelsLast) {
604+
TensorFactory<ScalarType::Float> tf;
605+
606+
const auto input = tf.make_channels_last({1, 1, 1, 2}, {1.0, 4.0});
607+
std::array<int64_t, 2> output_size = {1, 4};
608+
auto out = tf.zeros_channels_last({1, 1, 1, 4});
609+
610+
op_upsample_bilinear2d_vec_out(
611+
input,
612+
OptionalArrayRef<int64_t>({output_size.data(), output_size.size()}),
613+
false,
614+
{},
615+
out);
616+
617+
const auto expected =
618+
tf.make_channels_last({1, 1, 1, 4}, {1.0, 1.75, 3.25, 4.0});
619+
620+
EXPECT_TENSOR_EQ(out, expected);
621+
}
622+
623+
TEST_F(OpUpsampleBilinear2dTest, SmokeTestChannelsLast) {
624+
TensorFactory<ScalarType::Float> tf;
625+
626+
const auto input = tf.make_channels_last(
627+
{1, 2, 3, 4}, {0.0, 12, 1, 13, 2, 14, 3, 15, 4, 16, 5, 17,
628+
6, 18, 7, 19, 8, 20, 9, 21, 10, 22, 11, 23});
629+
std::array<int64_t, 2> output_size = {6, 8};
630+
auto out = tf.zeros_channels_last({1, 2, 6, 8});
631+
632+
op_upsample_bilinear2d_vec_out(
633+
input,
634+
OptionalArrayRef<int64_t>({output_size.data(), output_size.size()}),
635+
false,
636+
{},
637+
out);
638+
639+
const auto expected = tf.make_channels_last(
640+
{1, 2, 6, 8},
641+
{0.0000, 12.0000, 0.2500, 12.2500, 0.7500, 12.7500, 1.2500, 13.2500,
642+
1.7500, 13.7500, 2.2500, 14.2500, 2.7500, 14.7500, 3.0000, 15.0000,
643+
1.0000, 13.0000, 1.2500, 13.2500, 1.7500, 13.7500, 2.2500, 14.2500,
644+
2.7500, 14.7500, 3.2500, 15.2500, 3.7500, 15.7500, 4.0000, 16.0000,
645+
3.0000, 15.0000, 3.2500, 15.2500, 3.7500, 15.7500, 4.2500, 16.2500,
646+
4.7500, 16.7500, 5.2500, 17.2500, 5.7500, 17.7500, 6.0000, 18.0000,
647+
5.0000, 17.0000, 5.2500, 17.2500, 5.7500, 17.7500, 6.2500, 18.2500,
648+
6.7500, 18.7500, 7.2500, 19.2500, 7.7500, 19.7500, 8.0000, 20.0000,
649+
7.0000, 19.0000, 7.2500, 19.2500, 7.7500, 19.7500, 8.2500, 20.2500,
650+
8.7500, 20.7500, 9.2500, 21.2500, 9.7500, 21.7500, 10.0000, 22.0000,
651+
8.0000, 20.0000, 8.2500, 20.2500, 8.7500, 20.7500, 9.2500, 21.2500,
652+
9.7500, 21.7500, 10.2500, 22.2500, 10.7500, 22.7500, 11.0000, 23.0000});
653+
654+
EXPECT_TENSOR_CLOSE(out, expected);
655+
}

0 commit comments

Comments
 (0)