|
14 | 14 | </script>
|
15 | 15 |
|
16 | 16 | <meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
17 |
| - <title>dpnp.dpnp_array — Data Parallel Extension for NumPy 0.17.0dev0+71.g97121023d42 documentation</title> |
| 17 | + <title>dpnp.dpnp_array — Data Parallel Extension for NumPy 0.17.0dev0+83.gd321c7c0fa documentation</title> |
18 | 18 | <link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=fa44fd50" />
|
19 | 19 | <link rel="stylesheet" type="text/css" href="../../_static/css/theme.css?v=e59714d7" />
|
20 | 20 |
|
21 | 21 |
|
22 | 22 | <script src="../../_static/jquery.js?v=5d32c60e"></script>
|
23 | 23 | <script src="../../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
24 |
| - <script src="../../_static/documentation_options.js?v=05423b36"></script> |
| 24 | + <script src="../../_static/documentation_options.js?v=3b921c15"></script> |
25 | 25 | <script src="../../_static/doctools.js?v=9a2dae69"></script>
|
26 | 26 | <script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
|
27 | 27 | <script src="../../_static/js/theme.js"></script>
|
@@ -1162,7 +1162,7 @@ <h1>Source code for dpnp.dpnp_array</h1><div class="highlight"><pre>
|
1162 | 1162 |
|
1163 | 1163 | <span class="sd"> Returns</span>
|
1164 | 1164 | <span class="sd"> -------</span>
|
1165 |
| -<span class="sd"> out: dpnp.ndarray</span> |
| 1165 | +<span class="sd"> out : dpnp.ndarray</span> |
1166 | 1166 | <span class="sd"> A copy of the input array, flattened to one dimension.</span>
|
1167 | 1167 |
|
1168 | 1168 | <span class="sd"> See Also</span>
|
@@ -1228,43 +1228,56 @@ <h1>Source code for dpnp.dpnp_array</h1><div class="highlight"><pre>
|
1228 | 1228 |
|
1229 | 1229 | <div class="viewcode-block" id="dpnp_array.item">
|
1230 | 1230 | <a class="viewcode-back" href="../../reference/generated/dpnp.dpnp_array.dpnp_array.html#dpnp.dpnp_array.dpnp_array.item">[docs]</a>
|
1231 |
| - <span class="k">def</span> <span class="nf">item</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">id</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> |
| 1231 | + <span class="k">def</span> <span class="nf">item</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">):</span> |
1232 | 1232 | <span class="w"> </span><span class="sd">"""</span>
|
1233 | 1233 | <span class="sd"> Copy an element of an array to a standard Python scalar and return it.</span>
|
1234 | 1234 |
|
1235 | 1235 | <span class="sd"> For full documentation refer to :obj:`numpy.ndarray.item`.</span>
|
1236 | 1236 |
|
| 1237 | +<span class="sd"> Parameters</span> |
| 1238 | +<span class="sd"> ----------</span> |
| 1239 | +<span class="sd"> *args : {none, int, tuple of ints}</span> |
| 1240 | +<span class="sd"> - none: in this case, the method only works for arrays with</span> |
| 1241 | +<span class="sd"> one element (``a.size == 1``), which element is copied into a</span> |
| 1242 | +<span class="sd"> standard Python scalar object and returned.</span> |
| 1243 | +<span class="sd"> - int: this argument is interpreted as a flat index into the array,</span> |
| 1244 | +<span class="sd"> specifying which element to copy and return.</span> |
| 1245 | +<span class="sd"> - tuple of ints: functions as does a single int argument, except</span> |
| 1246 | +<span class="sd"> that the argument is interpreted as an nd-index into the array.</span> |
| 1247 | + |
| 1248 | +<span class="sd"> Returns</span> |
| 1249 | +<span class="sd"> -------</span> |
| 1250 | +<span class="sd"> out : Standard Python scalar object</span> |
| 1251 | +<span class="sd"> A copy of the specified element of the array as a suitable Python scalar.</span> |
| 1252 | + |
1237 | 1253 | <span class="sd"> Examples</span>
|
1238 | 1254 | <span class="sd"> --------</span>
|
| 1255 | +<span class="sd"> >>> import dpnp as np</span> |
1239 | 1256 | <span class="sd"> >>> np.random.seed(123)</span>
|
1240 | 1257 | <span class="sd"> >>> x = np.random.randint(9, size=(3, 3))</span>
|
1241 | 1258 | <span class="sd"> >>> x</span>
|
1242 |
| -<span class="sd"> array([[2, 2, 6],</span> |
1243 |
| -<span class="sd"> [1, 3, 6],</span> |
1244 |
| -<span class="sd"> [1, 0, 1]])</span> |
| 1259 | +<span class="sd"> array([[0, 0, 7],</span> |
| 1260 | +<span class="sd"> [6, 6, 6],</span> |
| 1261 | +<span class="sd"> [0, 7, 1]])</span> |
1245 | 1262 | <span class="sd"> >>> x.item(3)</span>
|
1246 |
| -<span class="sd"> 1</span> |
| 1263 | +<span class="sd"> 6</span> |
1247 | 1264 | <span class="sd"> >>> x.item(7)</span>
|
1248 |
| -<span class="sd"> 0</span> |
| 1265 | +<span class="sd"> 7</span> |
1249 | 1266 | <span class="sd"> >>> x.item((0, 1))</span>
|
1250 |
| -<span class="sd"> 2</span> |
| 1267 | +<span class="sd"> 0</span> |
1251 | 1268 | <span class="sd"> >>> x.item((2, 2))</span>
|
1252 | 1269 | <span class="sd"> 1</span>
|
1253 | 1270 |
|
1254 |
| -<span class="sd"> """</span> |
| 1271 | +<span class="sd"> >>> x = np.array(5)</span> |
| 1272 | +<span class="sd"> >>> x.item()</span> |
| 1273 | +<span class="sd"> 5</span> |
1255 | 1274 |
|
1256 |
| - <span class="k">if</span> <span class="nb">id</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
1257 |
| - <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">size</span> <span class="o">!=</span> <span class="mi">1</span><span class="p">:</span> |
1258 |
| - <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
1259 |
| - <span class="s2">"DPNP ndarray::item(): can only convert an array of size 1 to a Python scalar"</span> |
1260 |
| - <span class="p">)</span> |
1261 |
| - <span class="k">else</span><span class="p">:</span> |
1262 |
| - <span class="nb">id</span> <span class="o">=</span> <span class="mi">0</span> |
1263 |
| - |
1264 |
| - <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">flat</span><span class="p">[</span><span class="nb">id</span><span class="p">]</span></div> |
| 1275 | +<span class="sd"> """</span> |
1265 | 1276 |
|
| 1277 | + <span class="c1"># TODO: implement a more efficient way to avoid copying to host</span> |
| 1278 | + <span class="c1"># for large arrays using `asnumpy()`</span> |
| 1279 | + <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span><span class="o">.</span><span class="n">item</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">)</span></div> |
1266 | 1280 |
|
1267 |
| - <span class="c1"># 'itemset',</span> |
1268 | 1281 |
|
1269 | 1282 | <span class="nd">@property</span>
|
1270 | 1283 | <span class="k">def</span> <span class="nf">itemsize</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
@@ -1379,8 +1392,6 @@ <h1>Source code for dpnp.dpnp_array</h1><div class="highlight"><pre>
|
1379 | 1392 |
|
1380 | 1393 | <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_array_obj</span><span class="o">.</span><span class="n">ndim</span>
|
1381 | 1394 |
|
1382 |
| - <span class="c1"># 'newbyteorder',</span> |
1383 |
| - |
1384 | 1395 | <div class="viewcode-block" id="dpnp_array.nonzero">
|
1385 | 1396 | <a class="viewcode-back" href="../../reference/generated/dpnp.dpnp_array.dpnp_array.html#dpnp.dpnp_array.dpnp_array.nonzero">[docs]</a>
|
1386 | 1397 | <span class="k">def</span> <span class="nf">nonzero</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
0 commit comments