-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathscreen.py
197 lines (153 loc) · 5.65 KB
/
screen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import glob
import os
import warnings
import textract
import requests
from flask import (Flask, json, Blueprint, jsonify, redirect, render_template, request,
url_for)
from gensim.summarization import summarize
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.neighbors import NearestNeighbors
from werkzeug import secure_filename
import pdf2txt as pdf
import PyPDF2
warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim')
class ResultElement:
def __init__(self, rank, filename):
self.rank = rank
self.filename = filename
def getfilepath(loc):
temp = str(loc)
temp = temp.replace('\\', '/')
return temp
def res(jobfile):
Resume_Vector = []
Ordered_list_Resume = []
Ordered_list_Resume_Score = []
LIST_OF_FILES = []
LIST_OF_FILES_PDF = []
LIST_OF_FILES_DOC = []
LIST_OF_FILES_DOCX = []
Resumes = []
Temp_pdf = []
os.chdir('./Original_Resumes')
for file in glob.glob('**/*.pdf', recursive=True):
LIST_OF_FILES_PDF.append(file)
for file in glob.glob('**/*.doc', recursive=True):
LIST_OF_FILES_DOC.append(file)
for file in glob.glob('**/*.docx', recursive=True):
LIST_OF_FILES_DOCX.append(file)
LIST_OF_FILES = LIST_OF_FILES_DOC + LIST_OF_FILES_DOCX + LIST_OF_FILES_PDF
# LIST_OF_FILES.remove("antiword.exe")
print("This is LIST OF FILES")
print(LIST_OF_FILES)
# print("Total Files to Parse\t" , len(LIST_OF_PDF_FILES))
print("####### PARSING ########")
for nooo,i in enumerate(LIST_OF_FILES):
Ordered_list_Resume.append(i)
Temp = i.split(".")
if Temp[1] == "pdf" or Temp[1] == "Pdf" or Temp[1] == "PDF":
try:
print("This is PDF" , nooo)
with open(i,'rb') as pdf_file:
read_pdf = PyPDF2.PdfFileReader(pdf_file)
# page = read_pdf.getPage(0)
# page_content = page.extractText()
# Resumes.append(Temp_pdf)
number_of_pages = read_pdf.getNumPages()
for page_number in range(number_of_pages):
page = read_pdf.getPage(page_number)
page_content = page.extractText()
page_content = page_content.replace('\n', ' ')
# page_content.replace("\r", "")
Temp_pdf = str(Temp_pdf) + str(page_content)
# Temp_pdf.append(page_content)
# print(Temp_pdf)
Resumes.extend([Temp_pdf])
Temp_pdf = ''
# f = open(str(i)+str("+") , 'w')
# f.write(page_content)
# f.close()
except Exception as e: print(e)
if Temp[1] == "doc" or Temp[1] == "Doc" or Temp[1] == "DOC":
print("This is DOC" , i)
try:
a = textract.process(i)
a = a.replace(b'\n', b' ')
a = a.replace(b'\r', b' ')
b = str(a)
c = [b]
Resumes.extend(c)
except Exception as e: print(e)
if Temp[1] == "docx" or Temp[1] == "Docx" or Temp[1] == "DOCX":
print("This is DOCX" , i)
try:
a = textract.process(i)
a = a.replace(b'\n', b' ')
a = a.replace(b'\r', b' ')
b = str(a)
c = [b]
Resumes.extend(c)
except Exception as e: print(e)
if Temp[1] == "ex" or Temp[1] == "Exe" or Temp[1] == "EXE":
print("This is EXE" , i)
pass
print("Done Parsing.")
Job_Desc = 0
LIST_OF_TXT_FILES = []
os.chdir('../Job_Description')
f = open(jobfile , 'r')
text = f.read()
try:
tttt = str(text)
tttt = summarize(tttt, word_count=100)
text = [tttt]
except:
text = 'None'
f.close()
vectorizer = TfidfVectorizer(stop_words='english')
# print(text)
vectorizer.fit(text)
vector = vectorizer.transform(text)
Job_Desc = vector.toarray()
# print("\n\n")
# print("This is job desc : " , Job_Desc)
os.chdir('../')
for i in Resumes:
text = i
tttt = str(text)
try:
tttt = summarize(tttt, word_count=100)
text = [tttt]
vector = vectorizer.transform(text)
aaa = vector.toarray()
Resume_Vector.append(vector.toarray())
except:
pass
# print(Resume_Vector)
for i in Resume_Vector:
samples = i
neigh = NearestNeighbors(n_neighbors=1)
neigh.fit(samples)
NearestNeighbors(algorithm='auto', leaf_size=30)
Ordered_list_Resume_Score.extend(neigh.kneighbors(Job_Desc)[0][0].tolist())
Z = [x for _,x in sorted(zip(Ordered_list_Resume_Score,Ordered_list_Resume))]
print(Ordered_list_Resume)
print(Ordered_list_Resume_Score)
flask_return = []
# for n,i in enumerate(Z):
# print("Rankkkkk\t" , n+1, ":\t" , i)
for n,i in enumerate(Z):
# print("Rank\t" , n+1, ":\t" , i)
# flask_return.append(str("Rank\t" , n+1, ":\t" , i))
name = getfilepath(i)
#name = name.split('.')[0]
rank = n+1
res = ResultElement(rank, name)
flask_return.append(res)
# res.printresult()
print(f"Rank{res.rank+1} :\t {res.filename}")
return flask_return
if __name__ == '__main__':
inputStr = input("")
sear(inputStr)