-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
272 lines (241 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import time
import numpy as np
import torch
from tqdm import tqdm
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from dataloaders import make_data_loader
from model import get_network
from model.deeplab.sync_batchnorm.replicate import patch_replication_callback
from utils.loss import SegmentationLosses
from utils.calculate_weights import calculate_weigths_labels
from utils.lr_scheduler import LR_Scheduler
from utils.saver import Saver
from utils.summaries import TensorboardSummary
from utils.tracker import Tracker
from utils.metrics import Evaluator
from config import get_config_tr
class Trainer(object):
def __init__(self, args):
self.args = args
# Define Saver
self.saver = Saver(args)
self.saver.save_experiment_config()
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
# Define Tracker
self.tracker = Tracker(run_directory=self.saver.experiment_dir)
# Define Dataloader
kwargs = {'num_workers': args.workers, 'pin_memory': True}
self.train_loader, self.val_loader = make_data_loader(args, **kwargs)
self.nclass = args.num_classes
# Define network
model = get_network(args)
# count parameters
param_count = 0
for param in model.parameters():
param_count += param.view(-1).size()[0]
print('Total parameters: {}M ({})'.format(param_count / 1e6, param_count))
# the version of torch on GPU (windows) doesn't support the operation
self.writer.add_graph(model, input_to_model=torch.zeros((args.batch_size, args.in_channels, 256, 256)))
if args.net == 'DeeplabV3Plus':
train_params = [{'params': model.get_1x_lr_params(), 'lr': args.lr},
{'params': model.get_10x_lr_params(), 'lr': args.lr * 10}]
else:
train_params = [{'params': model.parameters(), 'lr': args.lr}]
# Define Optimizer
optimizer = torch.optim.SGD(train_params, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=args.nesterov)
# Define Criterion
# whether to use class balanced weights
if args.use_balanced_weights:
classes_weights_path = os.path.join(os.path.split(args.train_list)[0], args.dataset+'_classes_weights.npy')
if os.path.isfile(classes_weights_path):
weight = np.load(classes_weights_path)
else:
weight = calculate_weigths_labels(os.path.split(args.train_list)[0],
args.dataset, self.train_loader, self.nclass)
weight = torch.from_numpy(weight.astype(np.float32))
else:
weight = None
self.criterion = SegmentationLosses(weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)
self.model, self.optimizer = model, optimizer
# Define Evaluator
self.evaluator = Evaluator(self.nclass)
# Define lr scheduler
if args.net == 'DeeplabV3Plus':
# "LR_Scheduler (step)" is the same as "torch.optim.lr_scheduler.StepLR"
self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr, args.epochs, len(self.train_loader))
else:
self.scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
# Using cuda
if args.cuda:
self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids)
if args.net == 'DeeplabV3Plus':
patch_replication_callback(self.model)
self.model = self.model.cuda()
# Resuming checkpoint
self.best_pred = 0.0
if args.resume is not None:
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch'] + 1
if args.cuda:
self.model.module.load_state_dict(checkpoint['state_dict'])
else:
self.model.load_state_dict(checkpoint['state_dict'])
if not args.ft:
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.best_pred = checkpoint['best_pred']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
# Clear start epoch if fine-tuning
if args.ft:
args.start_epoch = 0
# save untrained model
is_best = False
self.saver.save_checkpoint({
'epoch': -1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': 0.0,
}, is_best, filename='model_untrained.pth.tar')
def training(self, epoch):
# reset tracker
self.tracker.begin_epoch()
train_loss = 0.0
self.model.train()
tbar = tqdm(self.train_loader)
num_batch_tr = len(self.train_loader) # iter/batch num
num_img_tr = len(self.train_loader.dataset) # image num
for i, sample in enumerate(tbar):
if self.args.net != 'RSNet':
image, target = sample['image'], sample['label']
else:
image, target = sample['image'], \
sample['label'][:, self.args.top_crop: self.args.h - self.args.bottom_crop,
self.args.left_crop: self.args.w - self.args.right_crop]
if self.args.cuda:
image, target = image.cuda(), target.cuda()
if self.args.net == 'DeeplabV3Plus':
self.scheduler(self.optimizer, i, epoch, self.best_pred)
self.optimizer.zero_grad()
output = self.model(image)
loss = self.criterion(output, target)
loss.backward()
if self.args.net != 'DeeplabV3Plus':
torch.nn.utils.clip_grad_value_(self.model.parameters(), 0.1)
self.optimizer.step()
train_loss += loss.item()
# if (i + 1) % self.args.loss_interval == 0:
tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))
self.writer.add_scalar('train/total_loss_iter', loss.item(), i + num_batch_tr * epoch)
self.writer.add_scalar('train/lr_iter', self.optimizer.param_groups[0]['lr'], i + num_batch_tr * epoch)
if self.args.net != 'DeeplabV3Plus':
self.scheduler.step()
train_loss = train_loss / num_img_tr
self.writer.add_scalar('train/total_loss_epoch', train_loss, epoch) # train_loss / (i + 1)
self.writer.add_scalar('train/lr_epoch', self.optimizer.param_groups[0]['lr'], epoch)
self.tracker.train_epoch(epoch, train_loss, self.optimizer.param_groups[0]['lr']) # track performance
if self.args.net == 'DeeplabV3Plus':
for name, weight in self.model.module.aspp.named_parameters():
self.writer.add_histogram(f'train/{name}', weight, epoch)
self.writer.add_histogram(f'train/{name}.grad', weight.grad, epoch)
for name, weight in self.model.module.decoder.named_parameters():
self.writer.add_histogram(f'train/{name}', weight, epoch)
self.writer.add_histogram(f'train/{name}.grad', weight.grad, epoch)
else:
for name, weight in self.model.module.outc.named_parameters():
self.writer.add_histogram(f'train/{name}', weight, epoch)
self.writer.add_histogram(f'train/{name}.grad', weight.grad, epoch)
print('[Epoch: %d, numImages: %5d]' % (epoch, num_img_tr))
print('Loss: %.3f' % train_loss)
def validation(self, epoch):
self.model.eval()
self.evaluator.reset()
tbar = tqdm(self.val_loader, desc='\r')
num_img_val = len(self.val_loader.dataset) # image num
val_loss = 0.0
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if self.args.cuda:
image, target = image.cuda(), target.cuda()
with torch.no_grad():
output = self.model(image)
loss = self.criterion(output, target)
val_loss += loss.item()
# if (i + 1) % self.args.loss_interval == 0:
tbar.set_description('Validation loss: %.3f' % (val_loss / (i + 1)))
pred = output.data.cpu().numpy()
target = target.cpu().numpy()
pred = np.argmax(pred, axis=1).astype(np.uint8)
# Add batch sample into evaluator
self.evaluator.add_batch(target, pred)
# Fast test during the training
val_loss = val_loss / num_img_val
Acc = self.evaluator.Pixel_Accuracy()
Acc_class = self.evaluator.Pixel_Accuracy_Class()
mIoU = self.evaluator.Mean_Intersection_over_Union()
FWIoU = self.evaluator.Frequency_Weighted_Intersection_over_Union()
precision = self.evaluator.Precision()
recall = self.evaluator.Recall()
f_score = self.evaluator.F_score()
self.writer.add_scalar('val/total_loss_epoch', val_loss, epoch)
self.writer.add_scalar('val/mIoU', mIoU, epoch)
self.writer.add_scalar('val/Acc', Acc, epoch)
self.writer.add_scalar('val/Acc_class', Acc_class, epoch)
self.writer.add_scalar('val/fwIoU', FWIoU, epoch)
self.writer.add_scalar('val/precision', precision, epoch)
self.writer.add_scalar('val/recall', recall, epoch)
self.writer.add_scalar('val/f_score', f_score, epoch)
self.tracker.val_epoch(epoch, val_loss, Acc, Acc_class, mIoU, FWIoU) # track performance
self.tracker.end_epoch()
print('Validation:')
print('[Epoch: %d, numImages: %5d]' % (epoch, num_img_val))
print("Acc:{}, Acc_class:{}, mIoU:{}, fwIoU: {}".format(Acc, Acc_class, mIoU, FWIoU))
print("precision:{}, recall:{}, f_score:{}".format(precision, recall, f_score))
print('Loss: %.3f' % val_loss)
new_pred = mIoU
if new_pred > self.best_pred:
is_best = True
self.best_pred = new_pred
self.saver.save_checkpoint({
'epoch': epoch,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best, filename='checkpoint-e' + str(epoch) + '-MIoU{:.3f}'.format(new_pred) + '.pth.tar')
if self.args.save_epoch:
is_best = False
self.saver.save_checkpoint({
'epoch': epoch,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best, filename='checkpoint-e' + str(epoch) + '-MIoU{:.3f}'.format(new_pred) + '.pth.tar')
def main():
# choices=['DeeplabV3Plus', 'MFCNN', 'MSCFF', 'MUNet', 'TLNet', 'UNet', 'UNet-3', 'UNet-2', 'UNet-1', 'UNet-dilation', 'UNetS3', 'UNetS2', 'UNetS1']
args = get_config_tr('TLNet')
print(args)
torch.manual_seed(args.seed) # set seed for the CPU
np.random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
trainer = Trainer(args)
print('Starting Epoch:', trainer.args.start_epoch)
print('Total Epoches:', trainer.args.epochs)
for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
start = time.time()
trainer.training(epoch) # train
if not trainer.args.no_val and epoch % args.eval_interval == (args.eval_interval - 1):
trainer.validation(epoch) # validation
print('Epoch: {}, Time: {}s!'.format(epoch, time.time() - start))
trainer.writer.close()
if __name__ == "__main__":
time1 = time.time()
main()
print('Time: {}s!'.format(time.time() - time1))
print(time.strftime("%Y-%m-%d %H:%M:%S"))