|
| 1 | +""" |
| 2 | +Module for creating the smart scraper |
| 3 | +""" |
| 4 | +from .base_graph import BaseGraph |
| 5 | +from ..nodes import ( |
| 6 | + FetchNode, |
| 7 | + ParseNode, |
| 8 | + RAGNode, |
| 9 | + GenerateAnswerCSVNode |
| 10 | +) |
| 11 | +from .abstract_graph import AbstractGraph |
| 12 | + |
| 13 | + |
| 14 | +class CSVScraperGraph(AbstractGraph): |
| 15 | + """ |
| 16 | + SmartScraper is a comprehensive web scraping tool that automates the process of extracting |
| 17 | + information from web pages using a natural language model to interpret and answer prompts. |
| 18 | + """ |
| 19 | + |
| 20 | + def __init__(self, prompt: str, source: str, config: dict): |
| 21 | + """ |
| 22 | + Initializes the CSVScraperGraph with a prompt, source, and configuration. |
| 23 | + """ |
| 24 | + super().__init__(prompt, config, source) |
| 25 | + |
| 26 | + self.input_key = "csv" if source.endswith("csv") else "csv_dir" |
| 27 | + |
| 28 | + def _create_graph(self): |
| 29 | + """ |
| 30 | + Creates the graph of nodes representing the workflow for web scraping. |
| 31 | + """ |
| 32 | + fetch_node = FetchNode( |
| 33 | + input="csv_dir", |
| 34 | + output=["doc"], |
| 35 | + node_config={ |
| 36 | + "headless": self.headless, |
| 37 | + "verbose": self.verbose |
| 38 | + } |
| 39 | + ) |
| 40 | + parse_node = ParseNode( |
| 41 | + input="doc", |
| 42 | + output=["parsed_doc"], |
| 43 | + node_config={ |
| 44 | + "chunk_size": self.model_token, |
| 45 | + "verbose": self.verbose |
| 46 | + } |
| 47 | + ) |
| 48 | + rag_node = RAGNode( |
| 49 | + input="user_prompt & (parsed_doc | doc)", |
| 50 | + output=["relevant_chunks"], |
| 51 | + node_config={ |
| 52 | + "llm": self.llm_model, |
| 53 | + "embedder_model": self.embedder_model, |
| 54 | + "verbose": self.verbose |
| 55 | + } |
| 56 | + ) |
| 57 | + generate_answer_node = GenerateAnswerCSVNode( |
| 58 | + input="user_prompt & (relevant_chunks | parsed_doc | doc)", |
| 59 | + output=["answer"], |
| 60 | + node_config={ |
| 61 | + "llm": self.llm_model, |
| 62 | + "verbose": self.verbose |
| 63 | + } |
| 64 | + ) |
| 65 | + |
| 66 | + return BaseGraph( |
| 67 | + nodes=[ |
| 68 | + fetch_node, |
| 69 | + parse_node, |
| 70 | + rag_node, |
| 71 | + generate_answer_node, |
| 72 | + ], |
| 73 | + edges=[ |
| 74 | + (fetch_node, parse_node), |
| 75 | + (parse_node, rag_node), |
| 76 | + (rag_node, generate_answer_node) |
| 77 | + ], |
| 78 | + entry_point=fetch_node |
| 79 | + ) |
| 80 | + |
| 81 | + def run(self) -> str: |
| 82 | + """ |
| 83 | + Executes the web scraping process and returns the answer to the prompt. |
| 84 | + """ |
| 85 | + inputs = {"user_prompt": self.prompt, self.input_key: self.source} |
| 86 | + self.final_state, self.execution_info = self.graph.execute(inputs) |
| 87 | + |
| 88 | + return self.final_state.get("answer", "No answer found.") |
0 commit comments