|
| 1 | +""" |
| 2 | +Gaussian elimination method for solving a system of linear equations. |
| 3 | +Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination |
| 4 | +""" |
| 5 | + |
| 6 | + |
| 7 | +import numpy as np |
| 8 | + |
| 9 | + |
| 10 | +def retroactive_resolution(coefficients: np.matrix, vector: np.array) -> np.array: |
| 11 | + """ |
| 12 | + This function performs a retroactive linear system resolution |
| 13 | + for triangular matrix |
| 14 | +
|
| 15 | + Examples: |
| 16 | + 2x1 + 2x2 - 1x3 = 5 2x1 + 2x2 = -1 |
| 17 | + 0x1 - 2x2 - 1x3 = -7 0x1 - 2x2 = -1 |
| 18 | + 0x1 + 0x2 + 5x3 = 15 |
| 19 | + >>> gaussian_elimination([[2, 2, -1], [0, -2, -1], [0, 0, 5]], [[5], [-7], [15]]) |
| 20 | + array([[2.], |
| 21 | + [2.], |
| 22 | + [3.]]) |
| 23 | + >>> gaussian_elimination([[2, 2], [0, -2]], [[-1], [-1]]) |
| 24 | + array([[-1. ], |
| 25 | + [ 0.5]]) |
| 26 | + """ |
| 27 | + |
| 28 | + rows, columns = np.shape(coefficients) |
| 29 | + |
| 30 | + x = np.zeros((rows, 1), dtype=float) |
| 31 | + for row in reversed(range(rows)): |
| 32 | + sum = 0 |
| 33 | + for col in range(row + 1, columns): |
| 34 | + sum += coefficients[row, col] * x[col] |
| 35 | + |
| 36 | + x[row, 0] = (vector[row] - sum) / coefficients[row, row] |
| 37 | + |
| 38 | + return x |
| 39 | + |
| 40 | + |
| 41 | +def gaussian_elimination(coefficients: np.matrix, vector: np.array) -> np.array: |
| 42 | + """ |
| 43 | + This function performs Gaussian elimination method |
| 44 | +
|
| 45 | + Examples: |
| 46 | + 1x1 - 4x2 - 2x3 = -2 1x1 + 2x2 = 5 |
| 47 | + 5x1 + 2x2 - 2x3 = -3 5x1 + 2x2 = 5 |
| 48 | + 1x1 - 1x2 + 0x3 = 4 |
| 49 | + >>> gaussian_elimination([[1, -4, -2], [5, 2, -2], [1, -1, 0]], [[-2], [-3], [4]]) |
| 50 | + array([[ 2.3 ], |
| 51 | + [-1.7 ], |
| 52 | + [ 5.55]]) |
| 53 | + >>> gaussian_elimination([[1, 2], [5, 2]], [[5], [5]]) |
| 54 | + array([[0. ], |
| 55 | + [2.5]]) |
| 56 | + """ |
| 57 | + # coefficients must to be a square matrix so we need to check first |
| 58 | + rows, columns = np.shape(coefficients) |
| 59 | + if rows != columns: |
| 60 | + return [] |
| 61 | + |
| 62 | + # augmented matrix |
| 63 | + augmented_mat = np.concatenate((coefficients, vector), axis=1) |
| 64 | + augmented_mat = augmented_mat.astype("float64") |
| 65 | + |
| 66 | + # scale the matrix leaving it triangular |
| 67 | + for row in range(rows - 1): |
| 68 | + pivot = augmented_mat[row, row] |
| 69 | + for col in range(row + 1, columns): |
| 70 | + factor = augmented_mat[col, row] / pivot |
| 71 | + augmented_mat[col, :] -= factor * augmented_mat[row, :] |
| 72 | + |
| 73 | + x = retroactive_resolution( |
| 74 | + augmented_mat[:, 0:columns], augmented_mat[:, columns : columns + 1] |
| 75 | + ) |
| 76 | + |
| 77 | + return x |
| 78 | + |
| 79 | + |
| 80 | +if __name__ == "__main__": |
| 81 | + import doctest |
| 82 | + |
| 83 | + doctest.testmod() |
0 commit comments