|
| 1 | +"""Created by Nathan Damon, @bizzfitch on github |
| 2 | +>>> test_miller_rabin() |
| 3 | +""" |
| 4 | + |
| 5 | + |
| 6 | +def miller_rabin(n, allow_probable=False): |
| 7 | + """Deterministic Miller-Rabin algorithm for primes ~< 3.32e24. |
| 8 | +
|
| 9 | + Uses numerical analysis results to return whether or not the passed number |
| 10 | + is prime. If the passed number is above the upper limit, and |
| 11 | + allow_probable is True, then a return value of True indicates that n is |
| 12 | + probably prime. This test does not allow False negatives- a return value |
| 13 | + of False is ALWAYS composite. |
| 14 | +
|
| 15 | + Parameters |
| 16 | + ---------- |
| 17 | + n : int |
| 18 | + The integer to be tested. Since we usually care if a number is prime, |
| 19 | + n < 2 returns False instead of raising a ValueError. |
| 20 | + allow_probable: bool, default False |
| 21 | + Whether or not to test n above the upper bound of the deterministic test. |
| 22 | +
|
| 23 | + Raises |
| 24 | + ------ |
| 25 | + ValueError |
| 26 | +
|
| 27 | + Reference |
| 28 | + --------- |
| 29 | + https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test |
| 30 | + """ |
| 31 | + if n == 2: |
| 32 | + return True |
| 33 | + if not n % 2 or n < 2: |
| 34 | + return False |
| 35 | + if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit |
| 36 | + return False |
| 37 | + if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: |
| 38 | + raise ValueError( |
| 39 | + "Warning: upper bound of deterministic test is exceeded. " |
| 40 | + "Pass allow_probable=True to allow probabilistic test. " |
| 41 | + "A return value of True indicates a probable prime." |
| 42 | + ) |
| 43 | + # array bounds provided by analysis |
| 44 | + bounds = [2_047, |
| 45 | + 1_373_653, |
| 46 | + 25_326_001, |
| 47 | + 3_215_031_751, |
| 48 | + 2_152_302_898_747, |
| 49 | + 3_474_749_660_383, |
| 50 | + 341_550_071_728_321, |
| 51 | + 1, |
| 52 | + 3_825_123_056_546_413_051, |
| 53 | + 1, |
| 54 | + 1, |
| 55 | + 318_665_857_834_031_151_167_461, |
| 56 | + 3_317_044_064_679_887_385_961_981] |
| 57 | + |
| 58 | + primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] |
| 59 | + for idx, _p in enumerate(bounds, 1): |
| 60 | + if n < _p: |
| 61 | + # then we have our last prime to check |
| 62 | + plist = primes[:idx] |
| 63 | + break |
| 64 | + d, s = n - 1, 0 |
| 65 | + # break up n -1 into a power of 2 (s) and |
| 66 | + # remaining odd component |
| 67 | + # essentially, solve for d * 2 ** s == n - 1 |
| 68 | + while d % 2 == 0: |
| 69 | + d //= 2 |
| 70 | + s += 1 |
| 71 | + for prime in plist: |
| 72 | + pr = False |
| 73 | + for r in range(s): |
| 74 | + m = pow(prime, d * 2 ** r, n) |
| 75 | + # see article for analysis explanation for m |
| 76 | + if (r == 0 and m == 1) or ((m + 1) % n == 0): |
| 77 | + pr = True |
| 78 | + # this loop will not determine compositeness |
| 79 | + break |
| 80 | + if pr: |
| 81 | + continue |
| 82 | + # if pr is False, then the above loop never evaluated to true, |
| 83 | + # and the n MUST be composite |
| 84 | + return False |
| 85 | + return True |
| 86 | + |
| 87 | + |
| 88 | +def test_miller_rabin(): |
| 89 | + """Testing a nontrivial (ends in 1, 3, 7, 9) composite |
| 90 | + and a prime in each range. |
| 91 | + """ |
| 92 | + assert not miller_rabin(561) |
| 93 | + assert miller_rabin(563) |
| 94 | + # 2047 |
| 95 | + |
| 96 | + assert not miller_rabin(838_201) |
| 97 | + assert miller_rabin(838_207) |
| 98 | + # 1_373_653 |
| 99 | + |
| 100 | + assert not miller_rabin(17_316_001) |
| 101 | + assert miller_rabin(17_316_017) |
| 102 | + # 25_326_001 |
| 103 | + |
| 104 | + assert not miller_rabin(3_078_386_641) |
| 105 | + assert miller_rabin(3_078_386_653) |
| 106 | + # 3_215_031_751 |
| 107 | + |
| 108 | + assert not miller_rabin(1_713_045_574_801) |
| 109 | + assert miller_rabin(1_713_045_574_819) |
| 110 | + # 2_152_302_898_747 |
| 111 | + |
| 112 | + assert not miller_rabin(2_779_799_728_307) |
| 113 | + assert miller_rabin(2_779_799_728_327) |
| 114 | + # 3_474_749_660_383 |
| 115 | + |
| 116 | + assert not miller_rabin(113_850_023_909_441) |
| 117 | + assert miller_rabin(113_850_023_909_527) |
| 118 | + # 341_550_071_728_321 |
| 119 | + |
| 120 | + assert not miller_rabin(1_275_041_018_848_804_351) |
| 121 | + assert miller_rabin(1_275_041_018_848_804_391) |
| 122 | + # 3_825_123_056_546_413_051 |
| 123 | + |
| 124 | + assert not miller_rabin(79_666_464_458_507_787_791_867) |
| 125 | + assert miller_rabin(79_666_464_458_507_787_791_951) |
| 126 | + # 318_665_857_834_031_151_167_461 |
| 127 | + |
| 128 | + assert not miller_rabin(552_840_677_446_647_897_660_333) |
| 129 | + assert miller_rabin(552_840_677_446_647_897_660_359) |
| 130 | + # 3_317_044_064_679_887_385_961_981 |
| 131 | + # upper limit for probabilistic test |
| 132 | + |
| 133 | + |
| 134 | +if __name__ == '__main__': |
| 135 | + test_miller_rabin() |
0 commit comments