@@ -20,7 +20,7 @@ The algorithm is a simple way to find the *greatest common divisor* (GCD) of two
20
20
{% sample lang="js" %}
21
21
[ import:15-29, lang="javascript"] ( code/javascript/euclidean_example.js )
22
22
{% sample lang="lisp" %}
23
- [ import:3-13, lang="lisp"] ( code/clisp/euclidean_algorithm .lisp )
23
+ [ import:3-13, lang="lisp"] ( code/clisp/euclidean .lisp )
24
24
{% sample lang="py" %}
25
25
[ import:11-22, lang="python"] ( code/python/euclidean_example.py )
26
26
{% sample lang="haskell" %}
@@ -97,7 +97,7 @@ Modern implementations, though, often use the modulus operator (%) like so
97
97
{% sample lang="js" %}
98
98
[ import:1-13, lang="javascript"] ( code/javascript/euclidean_example.js )
99
99
{% sample lang="lisp" %}
100
- [ import:15-19, lang="lisp"] ( code/clisp/euclidean_algorithm .lisp )
100
+ [ import:15-19, lang="lisp"] ( code/clisp/euclidean .lisp )
101
101
{% sample lang="py" %}
102
102
[ import:1-9, lang="python"] ( code/python/euclidean_example.py )
103
103
{% sample lang="haskell" %}
@@ -185,7 +185,7 @@ Here's a video on the Euclidean algorithm:
185
185
{% sample lang="js" %}
186
186
[ import, lang="javascript"] ( code/javascript/euclidean_example.js )
187
187
{% sample lang="lisp" %}
188
- [ import, lang="lisp"] ( code/clisp/euclidean_algorithm .lisp )
188
+ [ import, lang="lisp"] ( code/clisp/euclidean .lisp )
189
189
{% sample lang="py" %}
190
190
[ import, lang="python"] ( code/python/euclidean_example.py )
191
191
{% sample lang="haskell" %}
0 commit comments