-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathPPNet.py
501 lines (426 loc) · 20.2 KB
/
PPNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import argparse
import math
import os
import shutil
import time
from pathlib import Path
import glob
import re
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.nn.functional as F
import utils.PPNetBulider
import utils.customTransform
import wandb
import tqdm
import random
import numpy as np
accMin = 0
parser = argparse.ArgumentParser()
parser.add_argument('--data', metavar='DIR', default=r'G:\Dataset\FGSC-23',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N',
help='mini-batch size (default: 512), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial (base) learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--dim', default=2048, type=int,
help='feature dimension (default: 2048)')
parser.add_argument('--pred-dim', default=512, type=int,
help='hidden dimension of the predictor (default: 512)')
parser.add_argument('--num_classes', default=23, type=int,
help='number of subclasses (for FGSC-23, it should be set to 23)')
parser.add_argument('--proxy_per_cls', default=3, type=int,
help='number of proxies per subclass (for FGSC-23, the optimal is 3)')
parser.add_argument('--pretrained', action='store_true')
parser.add_argument('--baseline', action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--test_model_path', default=None, type=str)
parser.add_argument('--fixed_seed', action='store_true')
def seed_torch(seed=0):
print("Seed Fixed!")
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def _init_fn(worker_id):
np.random.seed(0)
def main():
args = parser.parse_args()
if args.fixed_seed:
seed_torch()
if not args.test:
args.save_dir = increment_path("./model/exp", exist_ok=False) # increment run
print("Model saved in " + args.save_dir)
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
wandb_run = wandb.init(config=args, project="YourProject",
name="YourName", id=None)
main_worker(args)
def main_worker(args):
model = utils.PPNetBulider.PPNet(args.arch, args.dim, args.pred_dim, args.pretrained, args.baseline,
args.num_classes, args.proxy_per_cls)
init_lr = args.lr
model = model.cuda()
print(model)
similar_criterion = nn.CosineSimilarity(dim=1).cuda()
classify_criterion = nn.CrossEntropyLoss().cuda()
if not args.baseline:
optim_params = [{'params': model.encoder.parameters(), 'fix_lr': False},
{'params': model.avg_push.parameters(), 'fix_lr': False, 'custom': True},
{'params': model.max_push.parameters(), 'fix_lr': False, 'custom': True},
{'params': model.pull.parameters(), 'fix_lr': False, 'custom': True},
{'params': model.prototype.parameters(), 'fix_lr': False, 'custom': True, 'big': True},
{'params': model.classify_fc.parameters(), 'fix_lr': False, 'custom': True}]
else:
optim_params = [{'params': model.encoder.parameters(), 'fix_lr': False, 'custom': False},
{'params': model.classify_fc.parameters(), 'fix_lr': False, 'custom': True}]
optimizer = torch.optim.SGD(optim_params, init_lr, momentum=args.momentum, weight_decay=args.weight_decay)
cudnn.benchmark = True if not args.fixed_seed else False
traindir = os.path.join(args.data, 'train')
validdir = os.path.join(args.data, 'valid')
testdir = os.path.join(args.data, 'test')
train_augmentation = utils.customTransform.customAugmentation()
valid_augmentation = transforms.Compose([utils.customTransform.resize(), transforms.ToTensor()])
test_augmentation = transforms.Compose([utils.customTransform.resize(), transforms.ToTensor()])
train_dataset = datasets.ImageFolder(
traindir,
utils.PPNetBulider.TwoCropsTransform(train_augmentation))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True, worker_init_fn=_init_fn if args.fixed_seed else None)
valid_dataset = datasets.ImageFolder(
validdir,
valid_augmentation)
valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=False)
test_dataset = datasets.ImageFolder(
testdir,
test_augmentation)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=False)
if not args.test:
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, init_lr, epoch, args)
for param_group in optimizer.param_groups:
if 'custom' in param_group and param_group['custom']:
if 'big' in param_group:
wandb.log({'lr/prototype': param_group['lr']})
else:
wandb.log({'lr/custom': param_group['lr']})
else:
wandb.log({'lr/classifier': param_group['lr']})
# train for one epoch
train(train_loader, model, similar_criterion, classify_criterion, optimizer, epoch, args)
valid(valid_loader, model, classify_criterion, args)
test(test_loader, model, args)
def train(train_loader, model, similar_criterion, classify_criterion, optimizer, epoch, args):
print("Starting Train**********")
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4f')
if not args.baseline:
avgPushlossLog = AverageMeter('avgPushLoss', ':.4f')
maxPushlossLog = AverageMeter('maxPushLoss', ':.4f')
pulllossLog = AverageMeter('pullLoss', ':.4f')
lossClassifyLog = AverageMeter('classifyLoss', ':.4f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, avgPushlossLog, maxPushlossLog, pulllossLog, lossClassifyLog],
prefix="Epoch: [{}]".format(epoch))
else:
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
allAcc = 0
avgAcc = 0
classesCal = [0 for x in range(args.num_classes)]
correctCal = [0 for x in range(args.num_classes)]
for step, (images, label) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
label = label.cuda()
images[0] = images[0].cuda(non_blocking=True)
images[1] = images[1].cuda(non_blocking=True)
if not args.baseline:
# compute output and loss
t1, t2, m1, m2, a1, a2, m_d, a_d, pt = model(x1=images[0], x2=images[1], baseline=args.baseline)
avgPushloss = -(similar_criterion(a1[0], a_d[1]).mean() + similar_criterion(a2[0], a_d[0]).mean()) * 0.5 \
+ (similar_criterion(a1[1], a_d[1]).mean() + similar_criterion(a2[1], a_d[0]).mean()) * 0.5
maxPushloss = -(similar_criterion(m1[0], m_d[1]).mean() + similar_criterion(m2[0], m_d[0]).mean()) * 0.5 \
+ (similar_criterion(m1[1], m_d[1]).mean() + similar_criterion(m2[1], m_d[0]).mean()) * 0.5
pullLoss = (lossPull(pt[0], pt[1], label, args) + lossPull(pt[0], pt[2], label, args)) * 0.5
lossClassify = (classify_criterion(t1, label) + classify_criterion(t2, label)) * 0.5
loss = lossClassify + avgPushloss + maxPushloss + pullLoss
else:
t1, _, _, _, _, _, _, _ = model(x1=images[0], x2=None, baseline=args.baseline)
loss = classify_criterion(t1, label)
_, predict = torch.max(t1, 1)
allAcc += (predict == label).sum().item()
for i, j in enumerate(label):
classesCal[j.item()] += 1
if (predict[i] == label[i]):
correctCal[j.item()] += 1
losses.update(loss.item(), images[0].size(0))
if not args.baseline:
avgPushlossLog.update(avgPushloss.item(), images[0].size(0))
maxPushlossLog.update(maxPushloss.item(), images[0].size(0))
pulllossLog.update(pullLoss.item(), images[0].size(0))
lossClassifyLog.update(lossClassify.item(), images[0].size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if step % args.print_freq == 0:
progress.display(step)
for i in range(args.num_classes):
avgAcc += correctCal[i] / classesCal[i]
avgAcc /= args.num_classes
if not args.baseline:
wandb.log({"Loss/TrainLoss": losses.avg, "Loss/avgPushLoss": avgPushlossLog.avg,
"Loss/maxPushLoss": maxPushlossLog.avg, "Loss/pullLoss": pulllossLog.avg,
"Loss/classifyLoss": lossClassifyLog.avg, 'AvgAcc/TrainAcc': avgAcc,
'AllAcc/TrainAcc': allAcc / len(train_loader.dataset)})
else:
wandb.log({"Loss/TrainLoss": losses.avg, 'AvgAcc/TrainAcc': avgAcc,
'AllAcc/TrainAcc': allAcc / len(train_loader.dataset)})
def valid(valid_loader, model, classify_criterion, args):
global accMin
print("Starting Valid********")
classesCal = [0 for x in range(args.num_classes)]
correctCal = [0 for x in range(args.num_classes)]
model.eval()
accNum = 0
accAll = 0
lossAll = 0
for image, label in tqdm.tqdm(valid_loader):
image = image.cuda()
label = label.cuda()
if not args.baseline:
with torch.no_grad():
t1, t2, _, _, _, _, _, _, _ = model(image, image, args.baseline)
loss = (classify_criterion(t1, label) + classify_criterion(t2, label)) * 0.5
else:
with torch.no_grad():
t1, _, _, _, _, _, _, _ = model(image, None, args.baseline)
loss = classify_criterion(t1, label)
_, prediction = torch.max(t1, 1)
accAll += (prediction == label).sum().item()
for i, j in enumerate(label):
classesCal[j.item()] += 1
if (prediction[i] == label[i]):
correctCal[j.item()] += 1
lossAll += loss.item() * image.size(0)
for i in range(args.num_classes):
if (classesCal[i]):
accNum += correctCal[i] / classesCal[i]
print("class {} \t acc: {}".format(i, correctCal[i] / classesCal[i]))
accNum /= args.num_classes
print("lossAvg: {} \t avgAcc: {} \t allAcc: {}".format(lossAll / len(valid_loader.dataset), accNum,
accAll / len(valid_loader.dataset)))
wandb.log({"Loss/ValLoss": lossAll / len(valid_loader.dataset), "AvgAcc/ValAcc": accNum,
"AllAcc/ValAcc": accAll / len(valid_loader.dataset)})
if (accNum > accMin):
print("Save Model To {}".format(args.save_dir + "/bestModel.pth"))
torch.save(model.state_dict(), args.save_dir + "/bestModel.pth")
accMin = accNum
else:
torch.save(model.state_dict(), args.save_dir + "/lastModel.pth")
def test(test_loader, model, args):
print("Starting test********")
classesCal = [0 for x in range(args.num_classes)]
correctCal = [0 for x in range(args.num_classes)]
if args.test:
state = torch.load(os.path.join(args.test_model_path))
print("test:")
model.load_state_dict(state)
model.eval()
accAll = 0
accNum = 0
for image, label in tqdm.tqdm(test_loader):
image = image.cuda()
label = label.cuda()
if not args.baseline:
with torch.no_grad():
t1, t2, _, _, _, _, _, _, _ = model(image, image, args.baseline)
else:
with torch.no_grad():
t1, _, _, _, _, _, _, _ = model(image, None, args.baseline)
_, prediction = torch.max(t1, 1)
accAll += (prediction == label).sum().item()
for i, j in enumerate(label):
classesCal[j.item()] += 1
if (prediction[i] == label[i]):
correctCal[j.item()] += 1
for i in range(args.num_classes):
if (classesCal[i]):
accNum += correctCal[i] / classesCal[i]
print("class {} \t acc: {}".format(i, correctCal[i] / classesCal[i]))
accNum /= args.num_classes
print("avgAcc: {} \t allAcc: {}".format(accNum, accAll / len(test_loader.dataset)))
else:
best_state = torch.load(args.save_dir + "/bestModel.pth")
last_state = torch.load(args.save_dir + "/lastModel.pth")
print("best test:")
model.load_state_dict(best_state)
model.eval()
accAll = 0
accNum = 0
for image, label in tqdm.tqdm(test_loader):
image = image.cuda()
label = label.cuda()
if not args.baseline:
with torch.no_grad():
t1, t2, _, _, _, _, _, _, _ = model(image, image, args.baseline)
else:
with torch.no_grad():
t1, _, _, _, _, _, _, _ = model(image, None, args.baseline)
_, prediction = torch.max(t1, 1)
accAll += (prediction == label).sum().item()
for i, j in enumerate(label):
classesCal[j.item()] += 1
if (prediction[i] == label[i]):
correctCal[j.item()] += 1
for i in range(args.num_classes):
if (classesCal[i]):
accNum += correctCal[i] / classesCal[i]
print("class {} \t acc: {}".format(i, correctCal[i] / classesCal[i]))
accNum /= args.num_classes
print("avgAcc: {} \t allAcc: {}".format(accNum, accAll / len(test_loader.dataset)))
print("last test:")
model.load_state_dict(last_state)
model.eval()
accNum = 0
accAll = 0
classesCal = [0 for x in range(args.num_classes)]
correctCal = [0 for x in range(args.num_classes)]
for image, label in tqdm.tqdm(test_loader):
image = image.cuda()
label = label.cuda()
if not args.baseline:
with torch.no_grad():
t1, t2, _, _, _, _, _, _, _ = model(image, image, args.baseline)
else:
with torch.no_grad():
t1, _, _, _, _, _, _, _ = model(image, None, args.baseline)
_, prediction = torch.max(t1, 1)
accAll += (prediction == label).sum().item()
for i, j in enumerate(label):
classesCal[j.item()] += 1
if (prediction[i] == label[i]):
correctCal[j.item()] += 1
for i in range(args.num_classes):
if (classesCal[i]):
accNum += correctCal[i] / classesCal[i]
print("class {} \t acc: {}".format(i, correctCal[i] / classesCal[i]))
accNum /= args.num_classes
print("avgAcc: {} \t allAcc: {}".format(accNum, accAll / len(test_loader.dataset)))
def lossPull(prototype, feature, label, args):
sim_matrix = torch.mm(F.normalize(feature, dim=-1), F.normalize(prototype, dim=-1).t().contiguous())
mask = torch.zeros_like(sim_matrix)
for i in range(args.batch_size):
for j in range(args.proxy_per_cls):
mask[i][args.proxy_per_cls * label[i] + j] = 1
unsim = sim_matrix.masked_select((torch.ones_like(mask) - mask).bool()).mean()
sim = - sim_matrix.masked_select(mask.bool()).mean()
prototype_sim_matrix = torch.mm(F.normalize(prototype, dim=-1), F.normalize(prototype, dim=-1).t().contiguous())
prototype_mask = (torch.ones_like(prototype_sim_matrix) - torch.eye(args.proxy_per_cls * args.num_classes,
device=prototype_sim_matrix.device)).bool()
prototypeLoss = prototype_sim_matrix.masked_select(prototype_mask).mean()
return unsim + sim + prototypeLoss
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, init_lr, epoch, args):
"""Decay the learning rate based on schedule"""
totalWarm = 10
if (epoch < totalWarm):
cur_lr = init_lr * ((epoch + 1) / totalWarm)
else:
cur_lr = init_lr * 0.5 * (1. + math.cos(math.pi * (epoch + 1 - totalWarm) / (args.epochs - totalWarm)))
for param_group in optimizer.param_groups:
if 'fix_lr' in param_group and param_group['fix_lr']:
param_group['lr'] = init_lr
else:
param_group['lr'] = cur_lr
if 'custom' in param_group and param_group['custom']:
if 'big' in param_group:
param_group['lr'] *= 10
else:
param_group['lr'] *= 5
def increment_path(path, exist_ok=True, sep=''):
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
path = Path(path) # os-agnostic
if not path.exists():
return str(path)
else:
dirs = glob.glob(f"{path}{sep}*") # similar paths
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m] # indices
n = max(i) + 1 if i else 2 # increment number
return f"{path}{sep}{n}" # update path
if __name__ == '__main__':
main()