@@ -20,7 +20,7 @@ The algorithm is a simple way to find the *greatest common divisor* (GCD) of two
20
20
{% sample lang="js" %}
21
21
[ import:15-29, lang="javascript"] ( code/javascript/euclidean_example.js )
22
22
{% sample lang="lisp" %}
23
- [ import:3-12, lang="lisp"] ( code/clisp/euclidean_algorithm .lisp )
23
+ [ import:3-12, lang="lisp"] ( code/clisp/euclidean .lisp )
24
24
{% sample lang="py" %}
25
25
[ import:11-22, lang="python"] ( code/python/euclidean_example.py )
26
26
{% sample lang="haskell" %}
@@ -102,7 +102,7 @@ Modern implementations, though, often use the modulus operator (%) like so
102
102
{% sample lang="js" %}
103
103
[ import:1-13, lang="javascript"] ( code/javascript/euclidean_example.js )
104
104
{% sample lang="lisp" %}
105
- [ import:13-17 , lang="lisp"] ( code/clisp/euclidean_algorithm .lisp )
105
+ [ import:14-18 , lang="lisp"] ( code/clisp/euclidean .lisp )
106
106
{% sample lang="py" %}
107
107
[ import:1-9, lang="python"] ( code/python/euclidean_example.py )
108
108
{% sample lang="haskell" %}
@@ -195,7 +195,7 @@ Here's a video on the Euclidean algorithm:
195
195
{% sample lang="js" %}
196
196
[ import, lang="javascript"] ( code/javascript/euclidean_example.js )
197
197
{% sample lang="lisp" %}
198
- [ import, lang="lisp"] ( code/clisp/euclidean_algorithm .lisp )
198
+ [ import, lang="lisp"] ( code/clisp/euclidean .lisp )
199
199
{% sample lang="py" %}
200
200
[ import, lang="python"] ( code/python/euclidean_example.py )
201
201
{% sample lang="haskell" %}
0 commit comments