-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcategorizedMLContent.js
617 lines (614 loc) · 26.7 KB
/
categorizedMLContent.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import { article } from "framer-motion/client";
const categorizedVideos = {
"Introduction to Machine Learning": [
{
title: "What is Machine Learning? | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=ZftI2fEz0Fw"
},
{
title: "AI Vs ML Vs DL for Beginners in Hindi",
url: "https://youtube.com/watch?v=1v3_AQ26jZ0"
},
{
title: "Types of Machine Learning for Beginners | Types of Machine learning in Hindi | Types of ML in Depth",
url: "https://youtube.com/watch?v=81ymPYEtFOw"
},
{
title: "Batch Machine Learning | Offline Vs Online Learning | Machine Learning Types",
url: "https://youtube.com/watch?v=nPrhFxEuTYU"
},
{
title: "Online Machine Learning | Online Learning | Online Vs Offline Machine Learning",
url: "https://youtube.com/watch?v=3oOipgCbLIk"
},
{
title: "Instance-Based Vs Model-Based Learning | Types of Machine Learning",
url: "https://youtube.com/watch?v=ntAOq1ioTKo"
},
{
title: "Challenges in Machine Learning | Problems in Machine Learning",
url: "https://youtube.com/watch?v=WGUNAJki2S4"
},
{
title: "Application of Machine Learning | Real Life Machine Learning Applications",
url: "https://youtube.com/watch?v=UZio8TcTMrI"
},
{
title: "Machine Learning Development Life Cycle | MLDLC in Data Science",
url: "https://youtube.com/watch?v=iDbhQGz_rEo"
},
{
title: "Data Engineer Vs Data Analyst Vs Data Scientist Vs ML Engineer | Data Science Job Roles",
url: "https://youtube.com/watch?v=93rKZs0MkgU"
},
{
title: "What are Tensors | Tensor In-depth Explanation | Tensor in Machine Learning",
url: "https://youtube.com/watch?v=vVhD2EyS41Y"
},
{
title: "Installing Anaconda For Data Science | Jupyter Notebook for Machine Learning | Google Colab for ML",
url: "https://youtube.com/watch?v=82P5N2m41jE"
},
{
title: "End to End Toy Project | Day 13 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=dr7z7a_8lQw"
},
{
title: "How to Frame a Machine Learning Problem | How to plan a Data Science Project Effectively",
url: "https://youtube.com/watch?v=A9SezQlvakw"
},
],
"Data Preprocessing": [
{
title: "Working with CSV files | Day 15 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=a_XrmKlaGTs"
},
{
title: "Working with JSON/SQL | Day 16 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=fFwRC-fapIU"
},
{
title: "Fetching Data From an API | Day 17 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=roTZJaxjnJc"
},
{
title: "Fetching data using Web Scraping | Day 18 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=8NOdgjC1988"
},
{
title: "Understanding Your Data | Day 19 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=mJlRTUuVr04"
},
{
title: "EDA using Univariate Analysis | Day 20 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=4HyTlbHUKSw"
},
{
title: "EDA using Bivariate and Multivariate Analysis | Day 21 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=6D3VtEfCw7w"
},
{
title: "Pandas Profiling | Day 22 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=E69Lg2ZgOxg"
},
{
title: "Column Transformer in Machine Learning | How to use ColumnTransformer in Sklearn",
url: "https://youtube.com/watch?v=5TVj6iEBR4I"
},
{
title: "Encoding Categorical Data | Ordinal Encoding | Label Encoding",
url: "https://youtube.com/watch?v=w2GglmYHfmM"
},
{
title: "One Hot Encoding | Handling Categorical Data | Day 27 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=U5oCv3JKWKA"
},
{
title: "Machine Learning Pipelines A-Z | Day 29 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=xOccYkgRV4Q"
},
{
title: "Function Transformer | Log Transform | Reciprocal Transform | Square Root Transform",
url: "https://youtube.com/watch?v=cTjj3LE8E90"
},
{
title: "Power Transformer | Box - Cox Transform | Yeo - Johnson Transform",
url: "https://youtube.com/watch?v=lV_Z4HbNAx0"
},
{
title: "Binning and Binarization | Discretization | Quantile Binning | KMeans Binning",
url: "https://youtube.com/watch?v=kKWsJGKcMvo"
},
{
title: "Handling Mixed Variables | Feature Engineering",
url: "https://youtube.com/watch?v=9xiX-I5_LQY"
},
{
title: "Handling Date and Time Variables | Day 34 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=J73mvgG9fFs"
},
{
title: "Handling Missing Data | Part 1 | Complete Case Analysis",
url: "https://youtube.com/watch?v=aUnNWZorGmk",
articleLink:"https://www.theanalysisfactor.com/missing-data-mechanism/",
articleTitle: "Missing Data Mechanism",
notes: "NOTE: This article is a great resource to understand the different mechanisms of missing data."
},
{
title: "Handling missing data | Numerical Data | Simple Imputer",
url: "https://youtube.com/watch?v=mCL2xLBDw8M",
articleLink:"https://medium.com/analytics-vidhya/different-types-of-missing-data-59c87c046bf7",
articleTitle: "Different Types of Missing Data",
// notes: "NOTE: This article is a great resource to understand the different types of missing data."
},
{
title: "Handling Missing Categorical Data | Simple Imputer | Most Frequent Imputation | Missing Category Imp",
url: "https://youtube.com/watch?v=l_Wip8bEDFQ"
},
{
title: "Missing Indicator | Random Sample Imputation | Handling Missing Data Part 4",
url: "https://youtube.com/watch?v=Ratcir3p03w"
},
{
title: "KNN Imputer | Multivariate Imputation | Handling Missing Data Part 5",
url: "https://youtube.com/watch?v=-fK-xEev2I8"
},
{
title: "Multivariate Imputation by Chained Equations for Missing Value | MICE Algorithm | Iterative Imputer",
url: "https://youtube.com/watch?v=a38ehxv3kyk"
},
],
"Regression Techniques": [
{
title: "Simple Linear Regression | Code + Intuition | Simplest Explanation in Hindi",
url: "https://youtube.com/watch?v=UZPfbG0jNec"
},
{
title: "Simple Linear Regression | Mathematical Formulation | Coding from Scratch",
url: "https://youtube.com/watch?v=dXHIDLPKdmA"
},
{
title:"VISUALIZATION",
url:"https://www.geogebra.org/m/rJj6yr6C",
notes:"NOTE: This is a great visualization to understand the concept of Linear Regression."
},
{
title:"VISUALIZATION",
url:"https://setosa.io/ev/ordinary-least-squares-regression/"
},
{
title: "Regression Metrics | MSE, MAE & RMSE | R2 Score & Adjusted R2 Score",
url: "https://youtube.com/watch?v=Ti7c-Hz7GSM"
},
{
title: "Multiple Linear Regression | Geometric Intuition & Code",
url: "https://youtube.com/watch?v=ashGekqstl8"
},
{
title: "Multiple Linear Regression | Part 2 | Mathematical Formulation From Scratch",
url: "https://youtube.com/watch?v=NU37mF5q8VE"
},
{
title: "Multiple Linear Regression | Part 3 | Code From Scratch",
url: "https://youtube.com/watch?v=VmZWXzxmNrE"
},
{
title: "Gradient Descent From Scratch | End to End Gradient Descent | Gradient Descent Animation",
url: "https://youtube.com/watch?v=ORyfPJypKuU"
},
{
title: "Batch Gradient Descent with Code Demo | Simple Explanation in Hindi",
url: "https://youtube.com/watch?v=Jyo53pAyVAM"
},
{
title: "Stochastic Gradient Descent",
url: "https://youtube.com/watch?v=V7KBAa_gh4c"
},
{
title: "Mini-Batch Gradient Descent",
url: "https://youtube.com/watch?v=_scscQ4HVTY"
},
{
title: "Polynomial Regression | Machine Learning",
url: "https://youtube.com/watch?v=BNWLf3cKdbQ"
},
{
title: "Bias Variance Trade-off | Overfitting and Underfitting in Machine Learning",
url: "https://youtube.com/watch?v=74DU02Fyrhk"
},
{
title: "Ridge Regression Part 1 | Geometric Intuition and Code | Regularized Linear Models",
url: "https://youtube.com/watch?v=aEow1QoTLo0"
},
{
title: "Ridge Regression Part 2 | Mathematical Formulation & Code from scratch | Regularized Linear Models",
url: "https://youtube.com/watch?v=oDlZBQjk_3A"
},
{
title: "Ridge Regression Part 3 | Gradient Descent | Regularized Linear Models",
url: "https://youtube.com/watch?v=Fci_wwMp8G8"
},
{
title: "5 Key Points - Ridge Regression | Part 4 | Regularized Linear Models",
url: "https://youtube.com/watch?v=8osKeShYVRQ"
},
{
title: "Lasso Regression | Intuition and Code Sample | Regularized Linear Models",
url: "https://youtube.com/watch?v=HLF4bFbBgwk"
},
{
title: "Why Lasso Regression creates sparsity?",
url: "https://youtube.com/watch?v=FN4aZPIAfI4"
},
{
title: "ElasticNet Regression | Intuition and Code Example | Regularized Linear Models",
url: "https://youtube.com/watch?v=2g2DBkFhTTY"
},
{
title: "KAGGLE COMPETITON",
url: "https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques",
notes:"NOTE: This is a great Kaggle competition where you can apply your knowledge of regression algos. You can also attempt this after learning ensembling techniques."
}
],
"Classification Techniques": [
{
title: "Logistic Regression Part 1 | Perceptron Trick",
url: "https://youtube.com/watch?v=XNXzVfItWGY"
},
{
title: "Logistic Regression Part 2 | Perceptron Trick Code",
url: "https://youtube.com/watch?v=tLezwPKvPK4"
},
{
title: "Logistic Regression Part 3 | Sigmoid Function | 100 Days of ML",
url: "https://youtube.com/watch?v=ehO0-6i9qD4"
},
{
title: "Logistic Regression Part 4 | Loss Function | Maximum Likelihood | Binary Cross Entropy",
url: "https://youtube.com/watch?v=6bXOo0sxY5c",
articleLink:"https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a",
articleTitle:"Understanding Binary Cross Entropy (Log Loss): A Visual Explanation",
notes:"NOTE: This article is a great resource to understand the concept of Binary Cross Entropy."
},
{
title: "Derivative of Sigmoid Function",
url: "https://youtube.com/watch?v=awjXaFR1jOM"
},
{
title: "Logistic Regression Part 5 | Gradient Descent & Code From Scratch",
url: "https://youtube.com/watch?v=ABrrSwMYWSg"
},
{
title: "Accuracy and Confusion Matrix | Type 1 and Type 2 Errors | Classification Metrics Part 1",
url: "https://youtube.com/watch?v=c09drtuCS3c"
},
{
title: "Precision, Recall and F1 Score | Classification Metrics Part 2",
url: "https://youtube.com/watch?v=iK-kdhJ-7yI"
},
{
title: "Softmax Regression || Multinomial Logistic Regression || Logistic Regression Part 6",
url: "https://youtube.com/watch?v=Z8noL_0M4tw",
articleLink:"https://archive.ph/Mzneg",
articleTitle:"Softmax Regression Article"
},
{
title: "Polynomial Features in Logistic Regression | Non Linear Logistic Regression | Logistic Regression 7",
url: "https://youtube.com/watch?v=WnBYW_DX3sM"
},
{
title: "Logistic Regression Hyperparameters || Logistic Regression Part 8",
url: "https://youtube.com/watch?v=ay_OcblJasE"
},
{
title: "Decision Trees Geometric Intuition | Entropy | Gini impurity | Information Gain",
url: "https://youtube.com/watch?v=IZnno-dKgVQ"
},
{
title: "Decision Trees - Hyperparameters | Overfitting and Underfitting in Decision Trees",
url: "https://youtube.com/watch?v=mDEV0Iucwz0"
},
{
title: "Regression Trees | Decision Trees Part 3",
url: "https://youtube.com/watch?v=RANHxyAvtM4",
articleLink:"https://archive.ph/6yJsG",
articleTitle:"Regression Trees Article"
},
{
title: "Awesome Decision Tree Visualization using dtreeviz library",
url: "https://youtube.com/watch?v=SlMZqfvl5uw"
},
{
title: "KAGGLE COMPETITION",
url: "https://www.kaggle.com/competitions/titanic",
notes: "NOTE: This is a great Kaggle competition where you can apply your knowledge of classification techniques. You can come here again after learning more algos."
}
],
"Clustering Algorithms": [
{
title: "K-Means Clustering Algorithm | Geometric Intuition | Clustering | Unsupervised Learning",
url: "https://youtube.com/watch?v=5shTLzwAdEc"
},
{
title:"VISUALIZATION",
url:"https://www.naftaliharris.com/blog/visualizing-k-means-clustering/",
notes:"NOTE: This is a great visualization to understand the concept of K-Means Clustering."
},
{
title: "K-Means Clustering Algorithm in Python | Practical Example | Student Clustering Example | sklearn",
url: "https://youtube.com/watch?v=UPvv9SprgVo"
},
{
title: "K-Means Clustering Algorithm From Scratch In Python | ML Algorithms From Scratch",
url: "https://youtube.com/watch?v=MFraC1JObUo"
},
{
title:"Agglomerative Hierarchical Clustering | Python Code Example",
url:"https://youtube.com/watch?v=Ka5i9TVUT-E",
articleLink:"https://medium.com/@sachinsoni600517/mastering-hierarchical-clustering-from-basic-to-advanced-5e770260bf93",
articleTitle:"Mastering Hierarchical Clustering from Basic to Advanced",
},
{
title: "DBSCAN Clustering Algorithms | Density Based Clustering | How DBSCAN Works | CampusX",
url: "https://youtube.com/watch?v=1_bLnsNmhCI"
},
{
title:"VISUALIZATION",
url:"https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/",
notes:"NOTE: This is a great visualization to understand the concept of DBSCAN Clustering."
},
{
title:"Support Vector Machines | Geometric Intuition",
url:"https://youtube.com/watch?v=ugTxMLjLS8M",
articleLink:"https://medium.com/analytics-vidhya/understanding-loss-functions-hinge-loss-a0ff112b40a1",
articleTitle:"Understanding Loss Functions: Hinge Loss"
},
{
title:"VISUALIZATION",
url:"https://cs.stanford.edu/people/karpathy/svmjs/demo/",
notes:"NOTE: This is a great visualization by Andrej Karpathy to understand the concept of SVM."
},
{
title:"Interactive SVM Demo",
url:"https://greitemann.dev/svm-demo",
notes:"NOTE: This is a great interactive demo to understand the concept of SVM."
},
{
title:"Mathematics of SVM | Support Vector Machines | Hard margin SVM",
url:"https://youtube.com/watch?v=yCAlHPDgWtM"
},
{
title:"Mathematics of Support Vector Machine | Soft Margin SVM",
url:"https://youtube.com/watch?v=utqrvIFAE1k",
articleLink:"https://towardsdatascience.com/support-vector-machines-dual-formulation-quadratic-programming-sequential-minimal-optimization-57f4387ce4dd#d326",
articleTitle:"Support Vector Machines: Dual Formulation, Quadratic Programming, Sequential Minimal Optimization",
notes:"NOTE: This article is a great resource to understand the mathematics behind SVM."
},
{
title:"Kernel Trick in SVM | Code Example",
url:"https://youtube.com/watch?v=pjvmVMDrzVU",
articleLink:"https://www.quora.com/What-are-kernels-in-machine-learning-and-SVM-and-why-do-we-need-them/answer/Lili-Jiang?srid=oOgT",
articleTitle:"What are kernels in machine learning and SVM and why do we need them?"
},
{
title:"Kernel Trick in SVM | Geometric Intuition",
url:"https://youtube.com/watch?v=egxjT0p7_K8",
articleLink:"https://prateekvjoshi.com/2012/09/01/kernel-functions-for-machine-learning/",
articleTitle:"Kernel Functions for Machine Learning"
},
{
title:"VISUALIZATION",
url:"https://www.youtube.com/watch?v=3liCbRZPrZA",
notes:"NOTE: This is a great yt video to visualize the concept of kernel trick in SVM."
},
{
title:"What is K Nearest Neighbors? | KNN Explained in Hindi | Simple Overview in 1 Video | CampusX",
url:"https://youtube.com/watch?v=abnL_GUGub4"
},
{
title:"VISUALIZATION",
url:"http://vision.stanford.edu/teaching/cs231n-demos/knn/",
notes:"NOTE: This is a great visualization by Stanford to understand the concept of KNN."
}
],
"Dimensionality Reduction": [
{
title: "Curse of Dimensionality",
url: "https://youtube.com/watch?v=ToGuhynu-No",
articleLink: "https://builtin.com/data-science/curse-dimensionality",
articleTitle: "The Curse of Dimensionality in Machine Learning",
notes: "NOTE: This article is a great resource to understand the concept of the Curse of Dimensionality."
},
{
title: "Principle Component Analysis (PCA) | Part 1 | Geometric Intuition",
url: "https://youtube.com/watch?v=iRbsBi5W0-c"
},
{
title: "Principle Component Analysis (PCA) | Part 2 | Problem Formulation and Step by Step Solution",
url: "https://youtube.com/watch?v=tXXnxjj2wM4",
articleLink : "https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/#:~:text=covariance%20matrix%20captures%20the%20spread%20of%20N%2Ddimensional%20data.&text=Figure%203.,is%20captured%20by%20the%20variance",
articleTitle: "Geometric Interpretation of Covariance Matrix",
notes:"NOTE: Please refer to this article to understand the geometric interpretation of the covariance matrix. Its a little advanced but will help you understand the concept better."
},
{
title: "Principle Component Analysis(PCA) | Part 3 | Code Example and Visualization",
url: "https://youtube.com/watch?v=tofVCUDrg4M"
},
{
title:"VISUALIZATION",
url:"https://setosa.io/ev/principal-component-analysis/",
notes:"NOTE: This is a great visualization to understand the concept of PCA."
},
{
title:"VISUALIZATION",
url:"https://dimensionality-reduction-293e465c2a3443e8941b016d.vercel.app/",
notes:"NOTE: This is a great visualization to understand the concept of Dimensionality Reduction and PCA."
}
],
"Model Evaluation & Tuning": [
{
title: "Hyperparameter Tuning Random Forest using GridSearchCV and RandomizedSearchCV | Code Example",
url: "https://youtube.com/watch?v=4Im0CT43QxY"
},
{
title: "OOB Score | Out of Bag Evaluation in Random Forest | Machine Learning",
url: "https://youtube.com/watch?v=tdDhyFoSG94",
articleLink:"https://www.geeksforgeeks.org/oob-errors-for-random-forests-in-scikit-learn/",
articleTitle: "OOB Errors for Random Forests in Scikit-learn",
// notes: "NOTE: This article is a great resource to understand the concept of OOB errors in Random Forests."
},
{
title: "Feature Importance using Random Forest and Decision Trees | How is Feature Importance calculated",
url: "https://youtube.com/watch?v=R47JAob1xBY"
},
],
"Feature Selection & Engineering": [
{
title: "Feature Construction | Feature Splitting",
url: "https://youtube.com/watch?v=ma-h30PoFms"
},
{
title: "What is Feature Engineering | Day 23 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=sluoVhT0ehg",
articleLink:"https://www.kaggle.com/code/prashant111/a-reference-guide-to-feature-engineering-methods",
articleTitle:"A Reference Guide to Feature Engineering Methods",
notes:"NOTE: This is a kaggle notebook which is a great resource to understand the different feature engineering methods."
},
{
articleLink:"https://www.analyticsvidhya.com/blog/2021/09/complete-guide-to-feature-engineering-zero-to-hero/",
articleTitle:"Complete Guide to Feature Engineering: Zero to Hero",
},
{
title: "Feature Scaling - Standardization | Day 24 | 100 Days of Machine Learning",
url: "https://youtube.com/watch?v=1Yw9sC0PNwY"
},
{
title: "Feature Scaling - Normalization | MinMaxScaling | MaxAbsScaling | RobustScaling",
url: "https://youtube.com/watch?v=eBrGyuA2MIg"
},
],
"Ensemble Learning": [
{
title: "Introduction to Ensemble Learning | Ensemble Techniques in Machine Learning",
url: "https://youtube.com/watch?v=bHK1fE_BUms"
},
{
title: "Voting Ensemble | Introduction and Core Idea | Part 1",
url: "https://youtube.com/watch?v=_W1i-c_6rOk"
},
{
title: "Voting Ensemble | Classification | Voting Classifier | Hard Voting Vs Soft Voting | Part 2",
url: "https://youtube.com/watch?v=pGQnNYdPTvY"
},
{
title: "Voting Ensemble | Regression | Part 3",
url: "https://youtube.com/watch?v=ut4vh59rGkw"
},
{
title: "Bagging | Introduction | Part 1",
url: "https://youtube.com/watch?v=LUiBOAy7x6Y"
},
{
title: "Bagging Ensemble | Part 2 | Bagging Classifiers",
url: "https://youtube.com/watch?v=-1T54G_E-ys"
},
{
title: "Bagging Ensemble | Part 3 | Bagging Regressor",
url: "https://youtube.com/watch?v=HYVzrETXbkE"
},
{
title: "Introduction to Random Forest | Intuition behind the Algorithm",
url: "https://youtube.com/watch?v=F9uESCHGjhA"
},
{
title:"VISUALIZATION",
url:"https://cs.stanford.edu/~karpathy/svmjs/demo/demoforest.html",
notes:"NOTE: This is a great visualization by Andrej Karpathy to understand the concept of Random Forest."
},
{
title: "How Random Forest Performs So Well? Bias Variance Trade-Off in Random Forest",
url: "https://youtube.com/watch?v=jHgG4gjuFAk"
},
{
title: "Bagging Vs Random Forest | What is the difference between Bagging and Random Forest | Very Important",
url: "https://youtube.com/watch?v=l93jRojZMqU"
},
{
title: "Random Forest Hyper-parameters",
url: "https://youtube.com/watch?v=WOFVY_wQ9wU"
},
{
title: "AdaBoost - A Step by Step Explanation",
url: "https://youtube.com/watch?v=RT0t9a3Xnfw"
},
{
title: "AdaBoost Algorithm | Code from Scratch",
url: "https://youtube.com/watch?v=a20TaKNsriE"
},
{
title: "AdaBoost Hyperparameters | GridSearchCV in Adaboost",
url: "https://youtube.com/watch?v=JmXnztjULnQ",
articleLink:"https://stats.stackexchange.com/questions/82323/shrinkage-parameter-in-adaboost",
articleTitle: "Shrinkage Parameter in AdaBoost",
},
{
title: "Bagging Vs Boosting | What is the difference between Bagging and Boosting",
url: "https://youtube.com/watch?v=7M5oWXCpDEw"
},
{
title: "Gradient Boosting Explained | How Gradient Boosting Works?",
url: "https://youtube.com/watch?v=fbKz7N92mhQ"
},
{
title: "Gradient Boosting Regression Part 2 | Mathematics of Gradient Boosting",
url: "https://youtube.com/watch?v=nMNiTZm-qY0"
},
{
title: "Gradient Boosting for Classification | Geometric Intuition | CampusX",
url: "https://youtube.com/watch?v=4p5EQtyxSyI",
articleLink:"https://towardsdatascience.com/all-you-need-to-know-about-gradient-boosting-algorithm-part-2-classification-d3ed8f56541e"
},
{
title: "Stacking and Blending Ensembles",
url: "https://youtube.com/watch?v=O-aDHBGMqXA"
},
{
title:"Gradient Boosting Explained | How Gradient Boosting Works?",
url:"https://youtube.com/watch?v=fbKz7N92mhQ"
},
{
title:"Gradient Boosting Regression Part 2 | Mathematics of Gradient Boosting",
url:"https://youtube.com/watch?v=nMNiTZm-qY0",
articleLink:"https://towardsdatascience.com/all-you-need-to-know-about-gradient-boosting-algorithm-part-1-regression-2520a34a502",
articleTitle:"All you need to know about Gradient Boosting Algorithm"
},
{
title:"Gradient Boosting for Classification | Geometric Intuition | CampusX",
url:"https://youtube.com/watch?v=4p5EQtyxSyI"
},
{
title:"Introduction to XGBOOST | Machine Learning | CampusX",
url:"https://youtube.com/watch?v=C6aDw4y8qJ0",
articleLink:"https://archive.ph/hpJV0",
articleTitle:"XGBoost: A Scalable Tree Boosting System (RESEARCH PAPER)"
},
{
title:"XGBoost for Regression | XGBoost Part 2 | CampusX",
url:"https://youtube.com/watch?v=gmp2tS2joaA"
},
{
title:"XGBoost For Classification | How XGBoost works on Classification Problems | CampusX",
url:"https://youtube.com/watch?v=mELtxVUNNrw"
},
{
title:"The Maths Behind XGBoost | Machine Learning | CampusX",
url:"https://youtube.com/watch?v=0Eo-_5bfers"
},
{
title: "KAGGLE COMPETITON",
url: "https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques",
notes:"NOTE: This is a great Kaggle competition where you can apply your knowledge of ensemble learning."
}
],
};
export default categorizedVideos;