-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathroutes.py
430 lines (365 loc) · 15.7 KB
/
routes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from aiohttp import web
from segment_anything import sam_model_registry, SamPredictor
from PIL import Image, ImageOps
from dotenv import load_dotenv
from blender.mesh_utils import upload_avatar_file
import os
import requests
import folder_paths
import json
import numpy as np
import server
import re
import base64
from PIL import Image
import io
import time
import execution
import random
load_dotenv()
# For speeding up ONNX model, see https://github.com/facebookresearch/segment-anything/tree/main/demo#onnx-multithreading-with-sharedarraybuffer
def inject_headers(original_handler):
async def _handler(request):
res = await original_handler(request)
res.headers["Cross-Origin-Opener-Policy"] = "same-origin"
res.headers["Cross-Origin-Embedder-Policy"] = "credentialless"
return res
return _handler
routes = []
for item in server.PromptServer.instance.routes._items:
if item.path == "/":
item = web.RouteDef(
method=item.method,
path=item.path,
handler=inject_headers(item.handler),
kwargs=item.kwargs,
)
routes.append(item)
server.PromptServer.instance.routes._items = routes
@server.PromptServer.instance.routes.get("/avatar-graph-comfyui/tw-styles.css")
async def get_web_styles(request):
filename = os.path.join(os.path.dirname(__file__), "js/tw-styles.css")
return web.FileResponse(filename)
@server.PromptServer.instance.routes.get("/sam_model")
async def get_sam_model(request):
model_type = request.rel_url.query.get("type", "vit_h")
filename = os.path.join(folder_paths.base_path, f"web/models/sam_{model_type}.onnx")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
print(f"Downloading ONNX model to {filename}")
response = requests.get(
f"https://avatech-avatar-dev1.nyc3.cdn.digitaloceanspaces.com/models/sam_{model_type}.onnx"
)
response.raise_for_status()
with open(filename, "wb") as f:
f.write(response.content)
print(f"ONNX model downloaded")
return web.FileResponse(filename)
def load_image(image, is_generated_image):
if is_generated_image:
image_path = f"{folder_paths.get_output_directory()}/{image}"
else:
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
return image
@server.PromptServer.instance.routes.post("/sam_model")
async def post_sam_model(request):
post = await request.json()
is_generated_image = post.get("isGeneratedImage")
emb_id = post.get("embedding_id")
ckpt = post.get("ckpt")
ckpt = folder_paths.get_full_path("sams", ckpt)
remote = post.get("remote")
model_type = re.findall(r"vit_[lbh]", ckpt)[0]
emb_filename = f"{folder_paths.get_output_directory()}/{emb_id}_{model_type}.npy"
output_json_filename = (
f"{folder_paths.get_output_directory()}/{emb_id}_{model_type}.json"
)
if not os.path.exists(emb_filename):
image = load_image(post.get("image"), is_generated_image)
if remote:
# Run embed in remote server
image = Image.fromarray((image * 255).astype(np.uint8))
buffered = io.BytesIO()
image.save(buffered, format="PNG")
image = base64.b64encode(buffered.getvalue()).decode()
res = requests.post(
"https://avatechgg--sam-embed.modal.run",
headers={
"Content-type": "application/json",
"Accept": "application/json",
},
data=json.dumps(
{
"image": image,
}
),
).json()
emb, input_size, original_size = (
res["emb"],
res["input_size"],
res["original_size"],
)
emb = np.array(emb).astype(np.float32)
np.save(emb_filename, emb)
with open(output_json_filename, "w") as f:
data = {
"input_size": input_size,
"original_size": original_size,
}
json.dump(data, f)
else:
sam = sam_model_registry[model_type](checkpoint=ckpt)
predictor = SamPredictor(sam)
image_np = (image * 255).astype(np.uint8)
predictor.set_image(image_np)
emb = predictor.get_image_embedding().cpu().numpy()
np.save(emb_filename, emb)
with open(output_json_filename, "w") as f:
json.dump(
{
"input_size": predictor.input_size,
"original_size": predictor.original_size,
},
f,
)
print("Finished embedding")
return web.json_response({})
def save_image(image, save_name=None):
input_folder = folder_paths.get_input_directory()
name, extension = os.path.splitext(image.filename)
if save_name == None:
save_name = f"{name}{extension}"
i = 1
while os.path.exists(f"{input_folder}/{save_name}"):
save_name = f"{name}_{i}{extension}"
i += 1
with open(f"{input_folder}/{save_name}", "wb") as f:
f.write(image.file.read())
return save_name
def post_prompt(json_data):
prompt_server = server.PromptServer.instance
json_data = prompt_server.trigger_on_prompt(json_data)
if "number" in json_data:
number = float(json_data["number"])
else:
number = prompt_server.number
if "front" in json_data:
if json_data["front"]:
number = -number
prompt_server.number += 1
if "prompt" in json_data:
prompt = json_data["prompt"]
valid = execution.validate_prompt(prompt)
extra_data = {}
if "extra_data" in json_data:
extra_data = json_data["extra_data"]
if "client_id" in json_data:
extra_data["client_id"] = json_data["client_id"]
if valid[0]:
prompt_id = str(uuid.uuid4())
outputs_to_execute = valid[2]
prompt_server.prompt_queue.put(
(number, prompt_id, prompt, extra_data, outputs_to_execute)
)
response = {
"prompt_id": prompt_id,
"number": number,
"node_errors": valid[3],
}
return web.json_response(response)
else:
print("invalid prompt:", valid[1])
return web.json_response(
{"error": valid[1], "node_errors": valid[3]}, status=400
)
else:
return web.json_response({"error": "no prompt", "node_errors": []}, status=400)
def randomSeed(num_digits=15):
range_start = 10 ** (num_digits - 1)
range_end = (10**num_digits) - 1
return random.randint(range_start, range_end)
def load_workflow(workflow_name):
with open(
os.path.join(
os.path.dirname(__file__),
f"workflow_templates/api/{workflow_name}.json",
)
) as f:
return "\n".join(f.readlines())
@server.PromptServer.instance.routes.post("/avatar_generation")
async def post_prompt_block(request):
prompt_server = server.PromptServer.instance
post = await request.post()
uploaded_workflow = post.get("workflow")
workflow_name = post.get("workflow_name")
if uploaded_workflow is not None:
workflow = uploaded_workflow
elif workflow_name is not None:
workflow = load_workflow(workflow_name)
ref_image = post.get("ref_image")
base_image = post.get("base_image")
if ref_image is not None:
image_path = save_image(ref_image)
image_name, image_ext = os.path.splitext(image_path)
workflow = workflow.replace("reference_image_avatech", image_path)
elif base_image is not None:
image_path = save_image(base_image)
image_name, image_ext = os.path.splitext(image_path)
workflow = workflow.replace("base_image", image_path)
workflow = workflow.replace("reference_image_avatech", image_path) # TMP
for key, value in post.items():
if key.startswith("mask_"):
mask_name = image_name + "_" + key.replace("mask_", "") + image_ext
mask_path = save_image(value, save_name=mask_name)
workflow = workflow.replace(f'"{key}"', f'"{mask_path}"')
workflow = workflow.replace("embedding_id_avatech", image_path)
workflow = workflow.replace("SEED", str(randomSeed()))
api_prompt = json.loads(workflow)
# skip generation part if base_image is provided
if base_image is not None:
for value in api_prompt.values():
if (
value["class_type"] == "LoadImageFromRequest"
and value["inputs"]["name"] == image_path
):
del value["inputs"]["image"]
elif (
value["class_type"] == "PreviewImage"
or value["class_type"] == "SaveImage"
):
value["inputs"] = {}
res = post_prompt({"prompt": api_prompt})
prompt_id = json.loads(res.text)["prompt_id"]
while True:
history = prompt_server.prompt_queue.get_history(prompt_id=prompt_id)
if history:
# file = get_avatar_file(history[prompt_id]["outputs"])
# return web.Response(body=file)
outputs = history[prompt_id]["outputs"]
for node_id, output in outputs.items():
if "gltfFilename" in output:
modelId = upload_avatar_file(output)
print("model id", modelId)
return web.json_response({"id": modelId}, status=200)
time.sleep(0.5)
# TODO: refactor the code
@server.PromptServer.instance.routes.post("/rendering_generation")
async def post_data_generation(request):
prompt_server = server.PromptServer.instance
post = await request.json()
workflow_name = post.get("workflow_name")
workflow = load_workflow(workflow_name)
workflow = workflow.replace("SEED", str(randomSeed()))
inputs = post.get("inputs")
for key, value in inputs.items():
workflow = workflow.replace(f'"{key}"', f'"{str(value)}"')
res = post_prompt({"prompt": json.loads(workflow)})
prompt_id = json.loads(res.text)["prompt_id"]
while True:
history = prompt_server.prompt_queue.get_history(prompt_id=prompt_id)
if history:
outputs = history[prompt_id]["outputs"]
for node_id, output in outputs.items():
if "images" in output:
filename = output["images"][0]["filename"]
if filename.startswith("rendered"):
return web.json_response({"image": filename}, status=200)
time.sleep(0.5)
@server.PromptServer.instance.routes.post("/image_generation")
async def post_image_generation(request):
prompt_server = server.PromptServer.instance
workflow = load_workflow("generation")
workflow = workflow.replace("SEED", str(randomSeed()))
res = post_prompt({"prompt": json.loads(workflow)})
prompt_id = json.loads(res.text)["prompt_id"]
while True:
history = prompt_server.prompt_queue.get_history(prompt_id=prompt_id)
if history:
outputs = history[prompt_id]["outputs"]
for node_id, output in outputs.items():
if "images" in output:
filename = output["images"][0]["filename"]
if filename.startswith("avatar"):
return web.json_response({"image": filename}, status=200)
time.sleep(0.5)
# @server.PromptServer.instance.routes.get("/get_default_workflow")
# async def get_default_workflow(request):
# # json_link = "https://cdn.discordapp.com/attachments/1119102674437156984/1172255632586448987/workflow_boy_2_1.json?ex=655fa722&is=654d3222&hm=463fa6a3c6ea60f7471196ff45382c729d3b856e86282f905d37a0398711860e&" # YP workflow
# # json_link = "https://cdn.discordapp.com/attachments/729003657483518063/1172504658812608572/workflow_15.json?ex=65608f0e&is=654e1a0e&hm=f707d887b9294c1e9b26e54856b1e516d1725a1b25d044b46229cea6e5c804a1&" # Benny workflow
# # json_link = 'https://cdn.discordapp.com/attachments/1110859802701221898/1173536418337914970/newstyle.json?ex=65644ff5&is=6551daf5&hm=f129838fae10197351bd27c69c7ff5eb4edf2c7d6ed74e6db8b55ddaa3c77dee&' # Deepwoo workflow
# json_link = 'https://cdn.discordapp.com/attachments/729003657483518063/1174045115757633596/girl1114.json?ex=656629b8&is=6553b4b8&hm=df3d7798b887e2b3b6b06ea438f1bc4ba041dd0f9daf54ea48101845ec7f4243&'
# response = requests.get(json_link)
# response.raise_for_status()
# return web.json_response(response.json())
@server.PromptServer.instance.routes.get("/get_workflow")
async def get_workflow(request):
name = request.rel_url.query.get("name", "default")
# if name == "default":
# json_link = 'https://cdn.discordapp.com/attachments/729003657483518063/1174045115757633596/girl1114.json?ex=656629b8&is=6553b4b8&hm=df3d7798b887e2b3b6b06ea438f1bc4ba041dd0f9daf54ea48101845ec7f4243&'
# response = requests.get(json_link)
# response.raise_for_status()
# workflow = response.json()
# else:
if name == "default":
name = "Auto_segment_workflow"
workflows_path = os.path.join(os.path.dirname(__file__), "workflow_templates")
workflow = json.load(open(f"{workflows_path}/{name}.json"))
return web.json_response(workflow)
@server.PromptServer.instance.routes.post("/segments")
async def post_segments(request):
post = await request.json()
name = post.get("name")
segments = post.get("segments")
output_dir = os.path.join(folder_paths.base_path, f"output/segments_{name}")
os.makedirs(output_dir, exist_ok=True)
for key, value in segments.items():
filename = os.path.join(output_dir, f"{key}.png")
with open(filename, "wb") as f:
f.write(base64.b64decode(value.split(",")[1]))
order = list(segments.keys())
with open(os.path.join(output_dir, "order.json"), "w") as f:
json.dump(order, f)
return web.json_response({})
# @server.PromptServer.instance.routes.post("/segments_order")
# async def post_segments(request):
# post = await request.json()
# name = post.get("name")
# order = post.get("order")
# output_dir = os.path.join(folder_paths.base_path, f"output/{name}")
# os.makedirs(output_dir, exist_ok=True)
# with open(os.path.join(output_dir, "order.json") , "w") as f:
# json.dump(order, f)
# return web.json_response({})
@server.PromptServer.instance.routes.get("/get_webhook")
async def get_webhook(request):
url = os.getenv("DISCORD_WEBHOOK_URL")
return web.json_response(url)
import uuid
@server.PromptServer.instance.routes.post("/create_avatar_from_image")
async def post_input_file(request):
post = await request.read()
# Doesn't seems working when file isnt png / or nothing is uploaded
if not post:
raise web.HTTPBadRequest(reason="No image data received")
try:
queue_id = uuid.uuid4()
output_dir = os.path.join(
folder_paths.base_path, "input", "create_avatar_endpoint"
)
os.makedirs(output_dir, exist_ok=True)
filename = os.path.join(output_dir, str(queue_id) + ".png")
with open(filename, "wb") as f:
f.write(post)
return web.json_response(
{
"redirect_url": "https://ai-assistant.avatech.ai?queue-id="
+ str(queue_id)
}
)
except Exception as e:
print(e)
return web.json_response({"error": e})