|
| 1 | +import pytest |
| 2 | +import numpy as np |
| 3 | +from conftest import * |
| 4 | + |
| 5 | + |
| 6 | +@pytest.mark.parametrize("test_data", |
| 7 | + [ |
| 8 | + ({'a': [np.array([1, 2, 3]), np.array([4, 5, 6])], |
| 9 | + 'b': [np.array([1.5, 2.0, 3.2]), np.array([4.1, 5.7, 6.9])]}, |
| 10 | + np.object_, None), |
| 11 | + ({'a': [1.5, 2.5, 3.5], 'b': [9.2, 10.5, 11.8]}, np.float64, None), |
| 12 | + ({'A': [1, 2, 3, 4], 'B': [1, 2, 3, 4]}, np.int64, np.float64) |
| 13 | + ], |
| 14 | + ids=["array_data", "float_data", "int_data"]) |
| 15 | +def test_only_one_data(test_data): |
| 16 | + data, dtype, new_dtype = test_data |
| 17 | + columns = list(data.keys()) |
| 18 | + df = constructor_frame(data) |
| 19 | + df2 = df.__dataframe__() |
| 20 | + new_dtype = dtype if new_dtype is None else new_dtype |
| 21 | + assert df.columns.values.tolist() == columns |
| 22 | + val = len(df[columns[0]])-1 |
| 23 | + column_size = df.size |
| 24 | + for column in columns: |
| 25 | + assert df[column].tolist() == df[column].tolist() |
| 26 | + assert df[column].dtype.type is dtype |
| 27 | + assert df2.get_column_by_name(column).null_count == 0 |
| 28 | + assert df2.get_column_by_name(column).size == column_size |
| 29 | + assert df2.get_column_by_name(column).offset == 0 |
| 30 | + assert not df2["x"].is_masked |
| 31 | + n = np.random.randint(0, val) |
| 32 | + (df[column])[n] = None |
| 33 | + assert df[column].dtype.type is new_dtype |
| 34 | + assert df2.get_column_by_name(column).null_count == 1 |
| 35 | + |
| 36 | + |
| 37 | +def test_float_int(): |
| 38 | + df = constructor_frame({'a': [1, 2, 3], 'b': [3, 4, 5], |
| 39 | + 'c': [1.5, 2.5, 3.5], 'd': [9, 10, 11]}) |
| 40 | + df2 = df.__dataframe__() |
| 41 | + columns = ['a', 'b', 'c', 'd'] |
| 42 | + assert df.columns.values.tolist() == columns |
| 43 | + for column in columns: |
| 44 | + assert df[column].tolist() == df[column].tolist() |
| 45 | + if column is 'c': |
| 46 | + assert df[column].dtype.type is np.float64 |
| 47 | + else: |
| 48 | + assert df[column].dtype.type is np.int64 |
| 49 | + |
| 50 | + assert df2.get_column_by_name(column).null_count == 0 |
| 51 | + assert df2.get_column_by_name(column).size == 3 |
| 52 | + assert df2.get_column_by_name(column).offset == 0 |
| 53 | + |
| 54 | + n = np.random.randint(0, 2) |
| 55 | + (df[column])[n] = None |
| 56 | + assert df[column].dtype.type is np.float64 |
| 57 | + assert df2.get_column_by_name(column).null_count == 1 |
| 58 | + |
| 59 | + |
| 60 | +def test_mixed_intfloatbool(): |
| 61 | + df = constructor_frame({"x": np.array([True, True, False]), |
| 62 | + "y": np.array([1, 2, 0]), |
| 63 | + "z": np.array([9.2, 10.5, 11.8])}) |
| 64 | + df2 = df.__dataframe__() |
| 65 | + columns = ['x', 'y', 'z'] |
| 66 | + assert df.columns.values.tolist() == columns |
| 67 | + for column in columns: |
| 68 | + assert df[column].tolist() == df[column].tolist() |
| 69 | + assert df2.get_column_by_name(column).null_count == 0 |
| 70 | + assert df2.get_column_by_name(column).size == 3 |
| 71 | + assert df2.get_column_by_name(column).offset == 0 |
| 72 | + |
| 73 | + assert df["x"].dtype.type is np.bool_ |
| 74 | + assert df["y"].dtype.type is np.int32 |
| 75 | + assert df["z"].dtype.type is np.float64 |
| 76 | + |
| 77 | + assert df2.get_column_by_name("x")._allow_copy == True |
| 78 | + |
| 79 | + for column in columns: |
| 80 | + n = np.random.randint(0, 2) |
| 81 | + (df[column])[n] = None |
| 82 | + if column is "x": |
| 83 | + assert df[column].dtype.type is np.object_ |
| 84 | + else: |
| 85 | + assert df[column].dtype.type is np.float64 |
| 86 | + assert df2.get_column_by_name(column).null_count == 1 |
| 87 | + |
| 88 | + |
| 89 | +def test_string_dtype(): |
| 90 | + df = constructor_frame({"A": ["a", "b", "cdef", "", "g"]}) |
| 91 | + df2 = df.__dataframe__() |
| 92 | + columns = ['A'] |
| 93 | + assert df.columns.values.tolist() == columns |
| 94 | + for column in columns: |
| 95 | + assert df[column].tolist() == df[column].tolist() |
| 96 | + assert df[column].dtype.type is np.object_ |
| 97 | + assert df2.get_column_by_name(column).null_count == 0 |
| 98 | + |
| 99 | + |
| 100 | +def test_categorical(): |
| 101 | + df = constructor_frame({"year": [2012, 2013, 2015, 2019], "weekday": [0, 1, 4, 6]}) |
| 102 | + df = df.categorize("year", min_value=2012, max_value=2019) |
| 103 | + df = df.categorize("weekday", labels=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]) |
| 104 | + # Some detailed testing for correctness of dtype and null handling: |
| 105 | + col = df.__dataframe__().get_column_by_name("year") |
| 106 | + assert col.describe_categorical == (False, True, {0: 2012, 1: 2013, 2: 2014, 3: 2015, 4: 2016, 5: 2017, 6: 2018, 7: 2019}) |
| 107 | + assert col.describe_null == (0, None) |
| 108 | + col2 = df.__dataframe__().get_column_by_name("weekday") |
| 109 | + assert col2.describe_categorical == (False, True, {0: "Mon", 1: "Tue", 2: "Wed", 3: "Thu", 4: "Fri", 5: "Sat", 6: "Sun"}) |
| 110 | + assert col2.describe_null == (0, None) |
| 111 | + |
| 112 | + |
| 113 | +def test_dataframe(): |
| 114 | + df = constructor_frame({"x": [True, True, False], "y": [1, 2, 0], "z": [9.2, 10.5, 11.8]}) |
| 115 | + df2 = df.__dataframe__() |
| 116 | + assert df2._allow_copy == True |
| 117 | + assert df2.num_columns() == 3 |
| 118 | + assert df2.num_rows() == 3 |
| 119 | + assert df2.num_chunks() == 1 |
| 120 | + assert df2.column_names() == ["x", "y", "z"] |
| 121 | + assert df2.select_columns((0, 2))._df[:, 0].tolist() == df2.select_columns_by_name(("x", "z"))._df[:, 0].tolist() |
| 122 | + assert df2.select_columns((0, 2))._df[:, 1].tolist() == df2.select_columns_by_name(("x", "z"))._df[:, 1].tolist() |
| 123 | + |
| 124 | + |
| 125 | +def test_chunks(): |
| 126 | + df = constructor_frame({"x": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}) |
| 127 | + df2 = df.__dataframe__() |
| 128 | + chunk_iter = iter(df2.get_chunks(3)) |
| 129 | + chunk = next(chunk_iter) |
| 130 | + assert chunk.num_rows() == 4 |
| 131 | + chunk = next(chunk_iter) |
| 132 | + assert chunk.num_rows() == 4 |
| 133 | + chunk = next(chunk_iter) |
| 134 | + assert chunk.num_rows() == 2 |
| 135 | + with pytest.raises(StopIteration): |
| 136 | + chunk = next(chunk_iter) |
| 137 | + |
| 138 | + |
| 139 | +def test_get_chunks(): |
| 140 | + df = constructor_frame({"x": [1]}) |
| 141 | + df2 = df.__dataframe__() |
| 142 | + assert df2.get_chunks() == 1 |
0 commit comments