|
4 | 4 |
|
5 | 5 | if TYPE_CHECKING:
|
6 | 6 | from .column_object import Column
|
| 7 | + from .groupby_object import GroupBy |
7 | 8 |
|
8 | 9 |
|
9 | 10 | class DataFrame:
|
| 11 | + def groupby(self, keys: list[str], /) -> GroupBy: |
| 12 | + """ |
| 13 | + Group the DataFrame by the given columns. |
| 14 | + """ |
| 15 | + ... |
10 | 16 |
|
11 | 17 | def get_column_by_name(self, name: str, /) -> Column:
|
12 | 18 | """
|
@@ -359,5 +365,103 @@ def __divmod__(self, other: DataFrame | "Scalar") -> tuple["DataFrame", "DataFra
|
359 | 365 | Returns
|
360 | 366 | -------
|
361 | 367 | DataFrame
|
| 368 | + DataFrame |
| 369 | + """ |
| 370 | + ... |
| 371 | + |
| 372 | + def any(self, skipna: bool = True) -> DataFrame: |
| 373 | + """ |
| 374 | + Reduction returns a 1-row DataFrame. |
| 375 | + """ |
| 376 | + ... |
| 377 | + |
| 378 | + def all(self, skipna: bool = True) -> DataFrame: |
| 379 | + """ |
| 380 | + Reduction returns a 1-row DataFrame. |
| 381 | + """ |
| 382 | + ... |
| 383 | + |
| 384 | + def min(self, skipna: bool = True) -> DataFrame: |
| 385 | + """ |
| 386 | + Reduction returns a 1-row DataFrame. |
| 387 | + """ |
| 388 | + ... |
| 389 | + |
| 390 | + def max(self, skipna: bool = True) -> DataFrame: |
| 391 | + """ |
| 392 | + Reduction returns a 1-row DataFrame. |
| 393 | + """ |
| 394 | + ... |
| 395 | + |
| 396 | + def sum(self, skipna: bool = True) -> DataFrame: |
| 397 | + """ |
| 398 | + Reduction returns a 1-row DataFrame. |
| 399 | + """ |
| 400 | + ... |
| 401 | + |
| 402 | + def prod(self, skipna: bool = True) -> DataFrame: |
| 403 | + """ |
| 404 | + Reduction returns a 1-row DataFrame. |
| 405 | + """ |
| 406 | + ... |
| 407 | + |
| 408 | + def median(self, skipna: bool = True) -> DataFrame: |
| 409 | + """ |
| 410 | + Reduction returns a 1-row DataFrame. |
| 411 | + """ |
| 412 | + ... |
| 413 | + |
| 414 | + def mean(self, skipna: bool = True) -> DataFrame: |
| 415 | + """ |
| 416 | + Reduction returns a 1-row DataFrame. |
| 417 | + """ |
| 418 | + ... |
| 419 | + |
| 420 | + def std(self, skipna: bool = True) -> DataFrame: |
| 421 | + """ |
| 422 | + Reduction returns a 1-row DataFrame. |
| 423 | + """ |
| 424 | + ... |
| 425 | + |
| 426 | + def var(self, skipna: bool = True) -> DataFrame: |
| 427 | + """ |
| 428 | + Reduction returns a 1-row DataFrame. |
| 429 | + """ |
| 430 | + ... |
| 431 | + |
| 432 | + def isnull(self) -> DataFrame: |
| 433 | + """ |
| 434 | + Check for 'missing' or 'null' entries. |
| 435 | +
|
| 436 | + Returns |
| 437 | + ------- |
| 438 | + DataFrame |
| 439 | +
|
| 440 | + See also |
| 441 | + -------- |
| 442 | + isnan |
| 443 | +
|
| 444 | + Notes |
| 445 | + ----- |
| 446 | + Does *not* include NaN-like entries. |
| 447 | + """ |
| 448 | + ... |
| 449 | + |
| 450 | + def isnan(self) -> DataFrame: |
| 451 | + """ |
| 452 | + Check for nan-like entries. |
| 453 | +
|
| 454 | + Returns |
| 455 | + ------- |
| 456 | + DataFrame |
| 457 | +
|
| 458 | + See also |
| 459 | + -------- |
| 460 | + isnull |
| 461 | +
|
| 462 | + Notes |
| 463 | + ----- |
| 464 | + Includes anything with NaN-like semantics, e.g. np.datetime64("NaT"). |
| 465 | + Does *not* include 'missing' or 'null' entries. |
362 | 466 | """
|
363 | 467 | ...
|
0 commit comments