-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsimilarity_mapping.py
165 lines (139 loc) · 4.07 KB
/
similarity_mapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import tensorflow.keras.backend as K
from ts_model import AttRNN_Model
GSm_w2nMapping = {
'unknown': 0,
'nine': 1,
'yes': 2,
'no': 3,
'up': 4,
'down': 5,
'left': 6,
'right': 7,
'on': 8,
'off': 9,
'stop': 10,
'go': 11,
'zero': 12,
'one': 13,
'two': 14,
'three': 15,
'four': 16,
'five': 17,
'six': 18,
'seven': 19,
'eight': 20,
'backward': 21,
'bed': 22,
'bird': 23,
'cat': 24,
'dog': 25,
'follow': 26,
'forward': 27,
'happy': 28,
'house': 29,
'learn': 30,
'marvin': 31,
'sheila': 32,
'tree': 33,
'visual': 34,
'wow': 35
}
Gsm_n2wMapping= {
0: 'unknown',
1: 'nine',
2: 'yes',
3: 'no',
4: 'up',
5: 'down',
6: 'left',
7: 'right',
8: 'on',
9: 'off',
10: 'stop',
11: 'go',
12: 'zero',
13: 'one',
14: 'two',
15: 'three',
16: 'four',
17: 'five',
18: 'six',
19: 'seven',
20: 'eight',
21: 'backward',
22: 'bed',
23: 'bird',
24: 'cat',
25: 'dog',
26: 'follow',
27: 'forward',
28: 'happy',
29: 'house',
30: 'learn',
31: 'marvin',
32: 'sheila',
33: 'tree',
34: 'visual',
35: 'wow'
}
def source_target_mapping(sourceGen, target_audios, target_labels):
target_classes = np.unique(target_labels, axis=0)
target_cls2label = {label: i for i, label in enumerate(target_classes.tolist())}
target_label2cls = {i: label for label, i in target_cls2label.items()}
target_labels = [target_cls2label[cls] for cls in target_labels]
# We wants the last hidden output for clustering
Gsm_model = AttRNN_Model()
Gsm_model.summary()
Gsm_model = K.function([Gsm_model.input], [Gsm_model.layers[-2].output])
source_centers = [[] for i in range(36)]
target_centers = [[] for i in range(len(target_classes))]
for audio, label in zip(target_audios, target_labels):
audio = audio.reshape((1,-1))
out = Gsm_model([audio])
center = out[0]
target_centers[label].append(center)
for i in range(len(target_centers)):
target_centers[i] = np.concatenate(target_centers[i], axis=0).mean(axis=0)
for i in range(len(sourceGen)):
audios, labels = sourceGen.__getitem__(i)
batch_size, _ = audios.shape
batch_center = Gsm_model([audios])[0]
for j in range(batch_size):
center = batch_center[j].reshape(1, -1)
label = labels[j]
source_centers[label].append(center)
for i in range(len(source_centers)):
source_centers[i] = np.concatenate(source_centers[i], axis=0).mean(axis=0)
# Now we have a representative vector for each target and source class.
# Next we need to pair then.
counter = [0]*len(target_centers)
pair_result = {i: [] for i in range(len(target_centers))}
for s in range(len(source_centers)):
sims = {}
for t in range(len(target_centers)):
sim = np.dot(source_centers[s], target_centers[t]) / (np.linalg.norm(source_centers[s])*np.linalg.norm(target_centers[t]))
sims[t] = sim
sorted_sims = {k: v for k, v in sorted(sims.items(), key=lambda x:x[1], reverse=True)}
is_paired = False
for k, v in sorted_sims.items():
if counter[k] < 2:
pair_result[k].append(s)
counter[k]+=1
is_paired = True
break
if is_paired:
continue
# Every body have 2. Now let them be three
for k, v in sorted_sims.items():
if counter[k] < 3:
pair_result[k].append(s)
counter[k]+=1
break
pairing = []
for t, ss in pair_result.items():
print("source class: {} is paired with target class: {}".format( [Gsm_n2wMapping[s] for s in ss], target_label2cls[t]))
pairing.append(ss)
print("The label_map result is {}".format(pairing))
#np.save('source_centers.npy', source_centers)
#np.save('target_centers.npy', target_centers)