-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
426 lines (332 loc) · 17.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import torch
import torchvision
from torchvision import datasets, transforms
import torch.nn as nn
import torch.optim as optim
import os, sys
import argparse
import pickle
import pandas as pd
from datetime import datetime
import json
from torch.utils.data import Dataset, DataLoader
from torchvision import models
from core.model_generator import wideresnet, preact_resnet, resnet
from core.training import Trainer, TrainingDynamicsLogger
from core.data import CoresetSelection, IndexDataset, CIFARDataset, SVHNDataset, CINIC10Dataset, STL10Dataset
from core.utils import print_training_info, StdRedirect
model_names = ['resnet18', 'wrn-34-10', 'preact_resnet18']
parser = argparse.ArgumentParser(description='PyTorch CIFAR10,CIFAR100 Training')
######################### Training Setting #########################
parser.add_argument('--epochs', type=int, metavar='N',
help='The number of epochs to train a model.')
parser.add_argument('--iterations', type=int, metavar='N',
help='The number of iteration to train a model; conflict with --epoch.')
parser.add_argument('--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 256)')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--lr_policy', type=str, default='cosine', choices=['OneCycleLR', 'ReduceLROnPlateau', 'cosine', 'step'])
parser.add_argument('--network', type=str, default='resnet18', choices=['resnet18', 'resnet50'])
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100', 'svhn', 'cinic10', 'stl10'])
######################### Print Setting #########################
parser.add_argument('--iterations-per-testing', type=int, default=800, metavar='N',
help='The number of iterations for testing model')
parser.add_argument('--ignore-td', action='store_true', default=False)
######################### Path Setting #########################
parser.add_argument('--data-dir', type=str, default='../datasets/',
help='The dir path of the data.')
parser.add_argument('--base-dir', type=str,
help='The base dir of this project.')
parser.add_argument('--task-name', type=str, default='tmp',
help='The name of the training task.')
######################### Coreset Setting #########################
parser.add_argument('--coreset', action='store_true', default=False)
parser.add_argument('--coreset-mode', type=str, choices=['random', 'coreset', 'stratified', 'swav', 'badge', 'budget'])
parser.add_argument('--data-score-path', type=str)
parser.add_argument('--coreset-key', type=str)
parser.add_argument('--data-score-descending', type=int, default=0,
help='Set 1 to use larger score data first.')
parser.add_argument('--class-balanced', type=int, default=0,
help='Set 1 to use the same class ratio as to the whole dataset.')
parser.add_argument('--coreset-ratio', type=float)
#### Double-end Pruning Setting ####
parser.add_argument('--mis-key', type=str)
parser.add_argument('--mis-data-score-descending', type=int, default=0,
help='Set 1 to use larger score data first.')
parser.add_argument('--mis-ratio', type=float)
#### Reversed Sampling Setting ####
parser.add_argument('--reversed-ratio', type=float,
help="Ratio for the coreset, not the whole dataset.")
######################### GPU Setting #########################
parser.add_argument('--gpuid', type=str, default='0',
help='The ID of GPU.')
################### Load Pseudo Labels from DL models ###################
parser.add_argument('--load-pseudo', action='store_true', default=False)
parser.add_argument('--pseudo-train-label-path', type=str, help='Path for the pseudo train labels')
parser.add_argument('--pseudo-test-label-path', type=str, help='Path for the pseudo test')
######################### Save Coreset Index for Plotting #########################
parser.add_argument('--save-coreset', action='store_true', default=True)
parser.add_argument('--end-early', action='store_true', default=False)
######################### Setting for Future Use #########################
parser.add_argument('--load-from-best', action='store_true', default=False)
# parser.add_argument('--ckpt-name', type=str, default='model.ckpt',
# help='The name of the checkpoint.')
# parser.add_argument('--lr-scheduler', choices=['step', 'cosine'])
# parser.add_argument('--network', choices=model_names, default='resnet18')
# parser.add_argument('--pretrained', action='store_true')
# parser.add_argument('--augment', choices=['cifar10', 'rand'], default='cifar10')
args = parser.parse_args()
start_time = datetime.now()
assert args.epochs is None or args.iterations is None, "Both epochs and iterations are used!"
print(f'Dataset: {args.dataset}')
######################### Set path variable #########################
task_dir = os.path.join(args.base_dir, args.task_name)
os.makedirs(task_dir, exist_ok=True)
last_ckpt_path = os.path.join(task_dir, f'ckpt-last.pt')
best_ckpt_path = os.path.join(task_dir, f'ckpt-best.pt')
trainset_label_path = os.path.join(task_dir, f'trainset-labels.pt')
td_path = os.path.join(task_dir, f'td-{args.task_name}.pickle')
log_path = os.path.join(task_dir, f'log-train-{args.task_name}.log')
######################### Print setting #########################
sys.stdout=StdRedirect(log_path)
print_training_info(args, all=True)
#########################
print(f'Last ckpt path: {last_ckpt_path}')
GPUID = args.gpuid
os.environ["CUDA_VISIBLE_DEVICES"] = str(GPUID)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_dir = os.path.join(args.data_dir, args.dataset)
print(f'Data dir: {data_dir}')
valset = None
if args.dataset == 'cifar10':
trainset = CIFARDataset.get_cifar10_train(data_dir)
elif args.dataset == 'cifar100':
trainset = CIFARDataset.get_cifar100_train(data_dir)
print(f"length of train set - {len(trainset)}")
elif args.dataset == 'svhn':
trainset = SVHNDataset.get_svhn_train(data_dir)
elif args.dataset == 'stl10':
trainset = STL10Dataset.get_stl10_train(data_dir)
elif args.dataset == 'cinic10':
trainset = CINIC10Dataset.get_cinic10_train(data_dir)
valset = CINIC10Dataset.get_cinic10_train(data_dir, is_val=True)
if args.load_pseudo:
if "cifar" in args.dataset:
#--pseudo_train_label_path example: ../datasets/cifar-100-python/label.pt
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = CIFARDataset.load_custom_labels(trainset, args.pseudo_train_label_path)
if "svhn" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = SVHNDataset.load_custom_labels(trainset, args.pseudo_train_label_path)
if "stl10" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = STL10Dataset.load_custom_labels(trainset, args.pseudo_train_label_path)
if "cinic" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = CINIC10Dataset.load_custom_labels(trainset, args.pseudo_train_label_path)
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
valset = CINIC10Dataset.load_custom_labels(valset, args.pseudo_train_label_path, is_val=True)
if valset:
# merge trainset and valset
trainset = torch.utils.data.ConcatDataset([trainset, valset])
######################### Coreset Selection #########################
coreset_key = args.coreset_key
coreset_ratio = args.coreset_ratio
coreset_descending = (args.data_score_descending == 1)
total_num = len(trainset)
if args.coreset:
if args.coreset_mode not in ['random', 'swav', 'badge']:
print(args.coreset_mode)
with open(args.data_score_path, 'rb') as f:
data_score = pickle.load(f)
if args.coreset_mode == 'random':
coreset_index = CoresetSelection.random_selection(total_num=len(trainset), num=args.coreset_ratio * len(trainset))
if args.coreset_mode == 'coreset':
coreset_index = CoresetSelection.score_monotonic_selection(data_score=data_score, key=args.coreset_key, ratio=args.coreset_ratio, descending=(args.data_score_descending == 1), class_balanced=(args.class_balanced == 1))
if args.coreset_mode == 'stratified':
mis_num = int(args.mis_ratio * total_num)
data_score, score_index = CoresetSelection.mislabel_mask(data_score, mis_key='accumulated_margin', mis_num=mis_num, mis_descending=False, coreset_key=args.coreset_key)
coreset_num = int(args.coreset_ratio * total_num)
coreset_index, _ = CoresetSelection.stratified_sampling(data_score=data_score, coreset_key=args.coreset_key, coreset_num=coreset_num)
coreset_index = score_index[coreset_index]
print(f'Length of coreset: {len(coreset_index)}')
if args.coreset_mode == 'budget':
mis_num = int(args.mis_ratio * total_num)
coreset_num = int(args.coreset_ratio * total_num)
high_aum_chop_num = total_num - mis_num - coreset_num
coreset_index = CoresetSelection.direct_selection(data_score,
mis_key='accumulated_margin',
mis_num=mis_num,
mis_descending=False,
coreset_key=args.coreset_key,
chop_num=high_aum_chop_num)
print(f'Length of coreset: {len(coreset_index)}')
if args.coreset_mode == 'swav':
enhance = False
# load pickle file
with open(args.data_score_path, 'rb') as f:
data_score = pickle.load(f)
# data score: list of [index, distance, pseudo_label assigned by kmeans]
# sort by distance: descending
data_score = sorted(data_score, key=lambda x: x[1], reverse=True)
print(f"Loaded data score from {args.data_score_path}")
print(f'Length of data score: {len(data_score)}')
# calculate number of coreset to select
coreset_num = int(args.coreset_ratio * total_num)
# select the first coreset_num indices
if enhance:
coreset_index = CoresetSelection.select_balanced_coreset_prototypicality(data_score, coreset_num)
else:
coreset_index = [x[0] for x in data_score[:coreset_num]]
if args.coreset_mode == 'badge':
with open(args.data_score_path, 'r') as f:
badge_data = [json.loads(line) for line in f.readlines()]
badge_data_sorted = sorted(badge_data, key=lambda x: x["round"])
aggregated_indices = []
total_num_indices_needed = int(len(trainset) * coreset_ratio)
for round_data in badge_data_sorted[1:]:
if len(aggregated_indices) >= total_num_indices_needed:
break
aggregated_indices.extend(round_data["indices"])
if len(aggregated_indices) > total_num_indices_needed:
aggregated_indices = aggregated_indices[:total_num_indices_needed]
aggregated_indices = [int(idx) for idx in aggregated_indices]
coreset_index = aggregated_indices
print(f'Selected {len(trainset)} examples using badge coreset starting from round 1.')
if args.save_coreset:
# save the coreset as .pt file - set as default True
coreset_index_path = os.path.join(task_dir, f'coreset_index.pt')
with open(coreset_index_path, 'wb') as f:
pickle.dump(coreset_index, f)
print(f'Saved coreset index to {coreset_index_path}')
if args.end_early:
sys.exit(0)
trainset = torch.utils.data.Subset(trainset, coreset_index)
######################### Coreset Selection end #########################
trainset = IndexDataset(trainset)
print(f"length of train set - {len(trainset)}")
data_dir = os.path.join(args.data_dir, args.dataset)
print("first 100 labels in trainset:")
print([int(trainset[i][1][1]) for i in range(100)])
if args.dataset == 'cifar10':
testset = CIFARDataset.get_cifar10_test(data_dir)
elif args.dataset == 'cifar100':
testset = CIFARDataset.get_cifar100_test(data_dir)
elif args.dataset == 'svhn':
testset = SVHNDataset.get_svhn_test(data_dir)
elif args.dataset == 'stl10':
testset = STL10Dataset.get_stl10_test(data_dir)
elif args.dataset == 'cinic10':
testset = CINIC10Dataset.get_cinic10_test(data_dir)
if args.load_pseudo:
if "cifar" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_test_label_path}")
testset = CIFARDataset.load_custom_labels(testset, args.pseudo_test_label_path)
if "svhn" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_test_label_path}")
testset = SVHNDataset.load_custom_labels(testset, args.pseudo_test_label_path)
if "stl10" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_test_label_path}")
testset = STL10Dataset.load_custom_labels(testset, args.pseudo_test_label_path)
if "cinic" in args.dataset:
print(f"Loading Pseudo dataset labels from {args.pseudo_test_label_path}")
testset = CINIC10Dataset.load_custom_labels(testset, args.pseudo_test_label_path, is_test=True)
print(f"length of test set - {len(testset)}")
print('First 100 test label:')
print([int(testset[i][1]) for i in range(100)])
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True, num_workers=16)
testloader = torch.utils.data.DataLoader(
testset, batch_size=512, shuffle=True, num_workers=16)
# import ipdb ; ipdb.set_trace()
# for batch_idx, (idx, (inputs, targets)) in enumerate(trainloader):
# inputs, targets = inputs.to(device), targets.to(device)
# for batch_idx, (inputs, targets) in enumerate(testloader):
# inputs, targets = inputs.to(device), targets.to(device)
iterations_per_epoch = len(trainloader)
if args.iterations is None:
num_of_iterations = iterations_per_epoch * args.epochs
else:
num_of_iterations = args.iterations
if args.dataset in ['cifar10', 'svhn', 'cinic10', 'stl10']:
num_classes=10
elif args.dataset == 'cifar100':
num_classes=100
if args.network == 'resnet18':
print('resnet18')
model = resnet('resnet18', num_classes=num_classes, device=device)
if args.network == 'resnet50':
print('resnet50')
model = resnet('resnet50', num_classes=num_classes, device=device)
model=torch.nn.parallel.DataParallel(model).cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4, nesterov=True)
if args.lr_policy == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_of_iterations, eta_min=1e-4)
elif args.lr_policy == 'OneCycleLR':
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=args.lr, total_steps=num_of_iterations)
epoch_per_testing = args.iterations_per_testing // iterations_per_epoch
print(f'Total epoch: {num_of_iterations // iterations_per_epoch}')
print(f'Iterations per epoch: {iterations_per_epoch}')
print(f'Total iterations: {num_of_iterations}')
print(f'Epochs per testing: {epoch_per_testing}')
trainer = Trainer()
if args.ignore_td:
TD_logger = None
print('Ignore training dynamics info.')
else:
TD_logger = TrainingDynamicsLogger()
current_epoch = 0
best_acc = 0
best_epoch = -1
# check if load from best
if args.load_from_best:
print('Load from best ckpt')
state = torch.load(best_ckpt_path)
model.load_state_dict(state['model_state_dict'])
current_epoch = state['epoch']
# report best acc
test_loss, test_acc = trainer.test(model, testloader, criterion, device, log_interval=20, printlog=True)
best_acc = test_acc
best_epoch = current_epoch
print(f'Best acc: {test_acc * 100:.2f}')
while num_of_iterations > 0:
iterations_epoch = min(num_of_iterations, iterations_per_epoch)
trainer.train(current_epoch, -1, model, trainloader, optimizer, criterion, scheduler, device, TD_logger=TD_logger, log_interval=60, printlog=True)
num_of_iterations -= iterations_per_epoch
if current_epoch % epoch_per_testing == 0 or num_of_iterations == 0:
test_loss, test_acc = trainer.test(model, testloader, criterion, device, log_interval=20, printlog=True)
if test_acc > best_acc:
best_acc = test_acc
best_epoch = current_epoch
state = {
'model_state_dict': model.state_dict(),
'epoch': best_epoch
}
torch.save(state, best_ckpt_path)
current_epoch += 1
# scheduler.step()
# last ckpt testing
test_loss, test_acc = trainer.test(model, testloader, criterion, device, log_interval=20, printlog=True)
if test_acc > best_acc:
best_acc = test_acc
best_epoch = current_epoch
state = {
'model_state_dict': model.state_dict(),
'epoch': best_epoch
}
torch.save(state, best_ckpt_path)
print('==========================')
print(f'Best acc: {best_acc * 100:.2f}')
print(f'Best acc: {best_acc}')
print(f'Best epoch: {best_epoch}')
print(best_acc)
######################### Save #########################
state = {
'model_state_dict': model.state_dict(),
'epoch': current_epoch - 1
}
torch.save(state, last_ckpt_path)
if not args.ignore_td:
TD_logger.save_training_dynamics(td_path, data_name=args.dataset)
print(f'Total time consumed: {(datetime.now() - start_time).total_seconds():.2f}')