|
| 1 | +# Copyright 2020 Google Inc. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +"""Integration tests for firebase_admin.ml module.""" |
| 16 | +import re |
| 17 | +import pytest |
| 18 | + |
| 19 | + |
| 20 | +from firebase_admin import ml |
| 21 | +from firebase_admin import exceptions |
| 22 | +from tests import testutils |
| 23 | + |
| 24 | + |
| 25 | +# pylint: disable=import-error,no-name-in-module |
| 26 | +try: |
| 27 | + import tensorflow as tf |
| 28 | + import os # This is only needed for the tensorflow testing |
| 29 | + import shutil # This is only needed for the tensorflow testing |
| 30 | + _TF_ENABLED = True |
| 31 | +except ImportError: |
| 32 | + _TF_ENABLED = False |
| 33 | + |
| 34 | + |
| 35 | +@pytest.fixture |
| 36 | +def name_only_model(): |
| 37 | + model = ml.Model(display_name="TestModel123") |
| 38 | + yield model |
| 39 | + |
| 40 | + |
| 41 | +@pytest.fixture |
| 42 | +def name_and_tags_model(): |
| 43 | + model = ml.Model(display_name="TestModel123_tags", tags=['test_tag123']) |
| 44 | + yield model |
| 45 | + |
| 46 | + |
| 47 | +@pytest.fixture |
| 48 | +def full_model(): |
| 49 | + tflite_file_name = testutils.resource_filename('model1.tflite') |
| 50 | + source1 = ml.TFLiteGCSModelSource.from_tflite_model_file(tflite_file_name) |
| 51 | + format1 = ml.TFLiteFormat(model_source=source1) |
| 52 | + model = ml.Model( |
| 53 | + display_name="TestModel123_full", |
| 54 | + tags=['test_tag567'], |
| 55 | + model_format=format1) |
| 56 | + yield model |
| 57 | + |
| 58 | + |
| 59 | +@pytest.fixture |
| 60 | +def invalid_full_model(): |
| 61 | + tflite_file_name = testutils.resource_filename('invalid_model.tflite') |
| 62 | + source1 = ml.TFLiteGCSModelSource.from_tflite_model_file(tflite_file_name) |
| 63 | + format1 = ml.TFLiteFormat(model_source=source1) |
| 64 | + model = ml.Model( |
| 65 | + display_name="TestModel123_invalid_full", |
| 66 | + tags=['test_tag890'], |
| 67 | + model_format=format1) |
| 68 | + yield model |
| 69 | + |
| 70 | + |
| 71 | +# For rpc errors |
| 72 | +def check_firebase_error(excinfo, status, msg): |
| 73 | + err = excinfo.value |
| 74 | + assert isinstance(err, exceptions.FirebaseError) |
| 75 | + assert err.cause is not None |
| 76 | + assert err.http_response is not None |
| 77 | + assert err.http_response.status_code == status |
| 78 | + assert str(err) == msg |
| 79 | + |
| 80 | + |
| 81 | +# For operation errors |
| 82 | +def check_operation_error(excinfo, msg): |
| 83 | + err = excinfo.value |
| 84 | + assert isinstance(err, exceptions.FirebaseError) |
| 85 | + assert str(err) == msg |
| 86 | + |
| 87 | + |
| 88 | +def _ensure_model_exists(model): |
| 89 | + # Delete any previously existing model with the same name because |
| 90 | + # it may be modified from the model that is passed in. |
| 91 | + _delete_if_exists(model) |
| 92 | + |
| 93 | + # And recreate using the model passed in |
| 94 | + created_model = ml.create_model(model=model) |
| 95 | + return created_model |
| 96 | + |
| 97 | + |
| 98 | +# Use this when you know the model_id and are sure it exists. |
| 99 | +def _clean_up_model(model): |
| 100 | + ml.delete_model(model.model_id) |
| 101 | + |
| 102 | + |
| 103 | +# Use this when you don't know the model_id or it may not exist. |
| 104 | +def _delete_if_exists(model): |
| 105 | + filter_str = 'displayName={0}'.format(model.display_name) |
| 106 | + models_list = ml.list_models(list_filter=filter_str) |
| 107 | + for mdl in models_list.models: |
| 108 | + ml.delete_model(mdl.model_id) |
| 109 | + |
| 110 | + |
| 111 | +def test_create_simple_model(name_and_tags_model): |
| 112 | + _delete_if_exists(name_and_tags_model) |
| 113 | + |
| 114 | + firebase_model = ml.create_model(model=name_and_tags_model) |
| 115 | + assert firebase_model.display_name == name_and_tags_model.display_name |
| 116 | + assert firebase_model.tags == name_and_tags_model.tags |
| 117 | + assert firebase_model.model_id is not None |
| 118 | + assert firebase_model.create_time is not None |
| 119 | + assert firebase_model.update_time is not None |
| 120 | + assert firebase_model.validation_error == 'No model file has been uploaded.' |
| 121 | + assert firebase_model.locked is False |
| 122 | + assert firebase_model.published is False |
| 123 | + assert firebase_model.etag is not None |
| 124 | + assert firebase_model.model_hash is None |
| 125 | + |
| 126 | + _clean_up_model(firebase_model) |
| 127 | + |
| 128 | +def test_create_full_model(full_model): |
| 129 | + _delete_if_exists(full_model) |
| 130 | + |
| 131 | + firebase_model = ml.create_model(model=full_model) |
| 132 | + assert firebase_model.display_name == full_model.display_name |
| 133 | + assert firebase_model.tags == full_model.tags |
| 134 | + assert firebase_model.model_format.size_bytes is not None |
| 135 | + assert firebase_model.model_format.model_source == full_model.model_format.model_source |
| 136 | + assert firebase_model.model_id is not None |
| 137 | + assert firebase_model.create_time is not None |
| 138 | + assert firebase_model.update_time is not None |
| 139 | + assert firebase_model.validation_error is None |
| 140 | + assert firebase_model.locked is False |
| 141 | + assert firebase_model.published is False |
| 142 | + assert firebase_model.etag is not None |
| 143 | + assert firebase_model.model_hash is not None |
| 144 | + |
| 145 | + _clean_up_model(firebase_model) |
| 146 | + |
| 147 | + |
| 148 | +def test_create_already_existing_fails(full_model): |
| 149 | + _ensure_model_exists(full_model) |
| 150 | + with pytest.raises(exceptions.AlreadyExistsError) as excinfo: |
| 151 | + ml.create_model(model=full_model) |
| 152 | + check_operation_error( |
| 153 | + excinfo, |
| 154 | + 'Model \'{0}\' already exists'.format(full_model.display_name)) |
| 155 | + |
| 156 | + |
| 157 | +def test_create_invalid_model(invalid_full_model): |
| 158 | + _delete_if_exists(invalid_full_model) |
| 159 | + |
| 160 | + firebase_model = ml.create_model(model=invalid_full_model) |
| 161 | + assert firebase_model.display_name == invalid_full_model.display_name |
| 162 | + assert firebase_model.tags == invalid_full_model.tags |
| 163 | + assert firebase_model.model_format.size_bytes is None |
| 164 | + assert firebase_model.model_format.model_source == invalid_full_model.model_format.model_source |
| 165 | + assert firebase_model.model_id is not None |
| 166 | + assert firebase_model.create_time is not None |
| 167 | + assert firebase_model.update_time is not None |
| 168 | + assert firebase_model.validation_error == 'Invalid flatbuffer format' |
| 169 | + assert firebase_model.locked is False |
| 170 | + assert firebase_model.published is False |
| 171 | + assert firebase_model.etag is not None |
| 172 | + assert firebase_model.model_hash is None |
| 173 | + |
| 174 | + _clean_up_model(firebase_model) |
| 175 | + |
| 176 | +def test_get_model(name_only_model): |
| 177 | + existing_model = _ensure_model_exists(name_only_model) |
| 178 | + |
| 179 | + firebase_model = ml.get_model(existing_model.model_id) |
| 180 | + assert firebase_model.display_name == name_only_model.display_name |
| 181 | + assert firebase_model.model_id is not None |
| 182 | + assert firebase_model.create_time is not None |
| 183 | + assert firebase_model.update_time is not None |
| 184 | + assert firebase_model.validation_error == 'No model file has been uploaded.' |
| 185 | + assert firebase_model.etag is not None |
| 186 | + assert firebase_model.locked is False |
| 187 | + assert firebase_model.published is False |
| 188 | + assert firebase_model.model_hash is None |
| 189 | + |
| 190 | + _clean_up_model(firebase_model) |
| 191 | + |
| 192 | + |
| 193 | +def test_get_non_existing_model(name_only_model): |
| 194 | + # Get a valid model_id that no longer exists |
| 195 | + model = _ensure_model_exists(name_only_model) |
| 196 | + ml.delete_model(model.model_id) |
| 197 | + |
| 198 | + with pytest.raises(exceptions.NotFoundError) as excinfo: |
| 199 | + ml.get_model(model.model_id) |
| 200 | + check_firebase_error(excinfo, 404, 'Requested entity was not found.') |
| 201 | + |
| 202 | + |
| 203 | +def test_update_model(name_only_model): |
| 204 | + new_model_name = 'TestModel123_updated' |
| 205 | + _delete_if_exists(ml.Model(display_name=new_model_name)) |
| 206 | + existing_model = _ensure_model_exists(name_only_model) |
| 207 | + existing_model.display_name = new_model_name |
| 208 | + |
| 209 | + firebase_model = ml.update_model(existing_model) |
| 210 | + assert firebase_model.display_name == new_model_name |
| 211 | + assert firebase_model.model_id == existing_model.model_id |
| 212 | + assert firebase_model.create_time == existing_model.create_time |
| 213 | + assert firebase_model.update_time != existing_model.update_time |
| 214 | + assert firebase_model.validation_error == existing_model.validation_error |
| 215 | + assert firebase_model.etag != existing_model.etag |
| 216 | + assert firebase_model.published == existing_model.published |
| 217 | + assert firebase_model.locked == existing_model.locked |
| 218 | + |
| 219 | + # Second call with same model does not cause error |
| 220 | + firebase_model2 = ml.update_model(firebase_model) |
| 221 | + assert firebase_model2.display_name == firebase_model.display_name |
| 222 | + assert firebase_model2.model_id == firebase_model.model_id |
| 223 | + assert firebase_model2.create_time == firebase_model.create_time |
| 224 | + assert firebase_model2.update_time != firebase_model.update_time |
| 225 | + assert firebase_model2.validation_error == firebase_model.validation_error |
| 226 | + assert firebase_model2.etag != existing_model.etag |
| 227 | + assert firebase_model2.published == firebase_model.published |
| 228 | + assert firebase_model2.locked == firebase_model.locked |
| 229 | + |
| 230 | + _clean_up_model(firebase_model) |
| 231 | + |
| 232 | + |
| 233 | +def test_update_non_existing_model(name_only_model): |
| 234 | + model = _ensure_model_exists(name_only_model) |
| 235 | + ml.delete_model(model.model_id) |
| 236 | + |
| 237 | + model.tags = ['tag987'] |
| 238 | + with pytest.raises(exceptions.NotFoundError) as excinfo: |
| 239 | + ml.update_model(model) |
| 240 | + check_operation_error( |
| 241 | + excinfo, |
| 242 | + 'Model \'{0}\' was not found'.format(model.as_dict().get('name'))) |
| 243 | + |
| 244 | +def test_publish_unpublish_model(full_model): |
| 245 | + model = _ensure_model_exists(full_model) |
| 246 | + assert model.published is False |
| 247 | + |
| 248 | + published_model = ml.publish_model(model.model_id) |
| 249 | + assert published_model.published is True |
| 250 | + |
| 251 | + unpublished_model = ml.unpublish_model(published_model.model_id) |
| 252 | + assert unpublished_model.published is False |
| 253 | + |
| 254 | + _clean_up_model(unpublished_model) |
| 255 | + |
| 256 | + |
| 257 | +def test_publish_invalid_fails(name_only_model): |
| 258 | + model = _ensure_model_exists(name_only_model) |
| 259 | + assert model.validation_error is not None |
| 260 | + |
| 261 | + with pytest.raises(exceptions.FailedPreconditionError) as excinfo: |
| 262 | + ml.publish_model(model.model_id) |
| 263 | + check_operation_error( |
| 264 | + excinfo, |
| 265 | + 'Cannot publish a model that is not verified.') |
| 266 | + |
| 267 | + |
| 268 | +def test_publish_unpublish_non_existing_model(full_model): |
| 269 | + model = _ensure_model_exists(full_model) |
| 270 | + ml.delete_model(model.model_id) |
| 271 | + |
| 272 | + with pytest.raises(exceptions.NotFoundError) as excinfo: |
| 273 | + ml.publish_model(model.model_id) |
| 274 | + check_operation_error( |
| 275 | + excinfo, |
| 276 | + 'Model \'{0}\' was not found'.format(model.as_dict().get('name'))) |
| 277 | + |
| 278 | + with pytest.raises(exceptions.NotFoundError) as excinfo: |
| 279 | + ml.unpublish_model(model.model_id) |
| 280 | + check_operation_error( |
| 281 | + excinfo, |
| 282 | + 'Model \'{0}\' was not found'.format(model.as_dict().get('name'))) |
| 283 | + |
| 284 | + |
| 285 | +def test_list_models(name_only_model, name_and_tags_model): |
| 286 | + existing_model1 = _ensure_model_exists(name_only_model) |
| 287 | + existing_model2 = _ensure_model_exists(name_and_tags_model) |
| 288 | + filter_str = 'displayName={0} OR tags:{1}'.format( |
| 289 | + existing_model1.display_name, existing_model2.tags[0]) |
| 290 | + |
| 291 | + models_list = ml.list_models(list_filter=filter_str) |
| 292 | + assert len(models_list.models) == 2 |
| 293 | + for mdl in models_list.models: |
| 294 | + assert mdl == existing_model1 or mdl == existing_model2 |
| 295 | + assert models_list.models[0] != models_list.models[1] |
| 296 | + |
| 297 | + _clean_up_model(existing_model1) |
| 298 | + _clean_up_model(existing_model2) |
| 299 | + |
| 300 | + |
| 301 | +def test_list_models_invalid_filter(): |
| 302 | + invalid_filter = 'InvalidFilterParam=123' |
| 303 | + |
| 304 | + with pytest.raises(exceptions.InvalidArgumentError) as excinfo: |
| 305 | + ml.list_models(list_filter=invalid_filter) |
| 306 | + check_firebase_error(excinfo, 400, 'Request contains an invalid argument.') |
| 307 | + |
| 308 | + |
| 309 | +def test_delete_model(name_only_model): |
| 310 | + existing_model = _ensure_model_exists(name_only_model) |
| 311 | + |
| 312 | + ml.delete_model(existing_model.model_id) |
| 313 | + |
| 314 | + # Second delete of same model will fail |
| 315 | + with pytest.raises(exceptions.NotFoundError) as excinfo: |
| 316 | + ml.delete_model(existing_model.model_id) |
| 317 | + check_firebase_error(excinfo, 404, 'Requested entity was not found.') |
| 318 | + |
| 319 | + |
| 320 | +#'pip install tensorflow' in the environment if you want _TF_ENABLED = True |
| 321 | +#'pip install tensorflow=2.0.0' for version 2 etc. |
| 322 | +if _TF_ENABLED: |
| 323 | + # Test tensor flow conversion functions if tensor flow is enabled. |
| 324 | + SAVED_MODEL_DIR = '/tmp/saved_model/1' |
| 325 | + |
| 326 | + def _clean_up_tmp_directory(): |
| 327 | + if os.path.exists(SAVED_MODEL_DIR): |
| 328 | + shutil.rmtree(SAVED_MODEL_DIR) |
| 329 | + |
| 330 | + @pytest.fixture |
| 331 | + def keras_model(): |
| 332 | + x_array = [-1, 0, 1, 2, 3, 4] |
| 333 | + y_array = [-3, -1, 1, 3, 5, 7] |
| 334 | + model = tf.keras.models.Sequential( |
| 335 | + [tf.keras.layers.Dense(units=1, input_shape=[1])]) |
| 336 | + model.compile(optimizer='sgd', loss='mean_squared_error') |
| 337 | + model.fit(x_array, y_array, epochs=3) |
| 338 | + yield model |
| 339 | + |
| 340 | + @pytest.fixture |
| 341 | + def saved_model_dir(keras_model): |
| 342 | + # different versions have different model conversion capability |
| 343 | + # pick something that works for each version |
| 344 | + save_dir = SAVED_MODEL_DIR |
| 345 | + _clean_up_tmp_directory() # previous failures may leave files |
| 346 | + if tf.version.VERSION.startswith('1.'): |
| 347 | + tf.reset_default_graph() |
| 348 | + x_var = tf.placeholder(tf.float32, (None, 3), name="x") |
| 349 | + y_var = tf.multiply(x_var, x_var, name="y") |
| 350 | + with tf.Session() as sess: |
| 351 | + tf.saved_model.simple_save(sess, save_dir, {"x": x_var}, {"y": y_var}) |
| 352 | + else: |
| 353 | + # If it's not version 1.x or version 2.x we need to update the test. |
| 354 | + assert tf.version.VERSION.startswith('2.') |
| 355 | + tf.saved_model.save(keras_model, save_dir) |
| 356 | + yield save_dir |
| 357 | + |
| 358 | + |
| 359 | + def test_from_keras_model(keras_model): |
| 360 | + source1 = ml.TFLiteGCSModelSource.from_keras_model(keras_model, 'model2.tflite') |
| 361 | + assert re.search( |
| 362 | + '^gs://.*/Firebase/ML/Models/model2.tflite$', |
| 363 | + source1.gcs_tflite_uri) is not None |
| 364 | + |
| 365 | + # Validate the conversion by creating a model |
| 366 | + format1 = ml.TFLiteFormat(model_source=source1) |
| 367 | + model1 = ml.Model(display_name="KerasModel1", model_format=format1) |
| 368 | + firebase_model = ml.create_model(model1) |
| 369 | + assert firebase_model.model_id is not None |
| 370 | + assert firebase_model.validation_error is None |
| 371 | + |
| 372 | + _clean_up_model(firebase_model) |
| 373 | + |
| 374 | + def test_from_saved_model(saved_model_dir): |
| 375 | + # Test the conversion helper |
| 376 | + source1 = ml.TFLiteGCSModelSource.from_saved_model(saved_model_dir, 'model3.tflite') |
| 377 | + assert re.search( |
| 378 | + '^gs://.*/Firebase/ML/Models/model3.tflite$', |
| 379 | + source1.gcs_tflite_uri) is not None |
| 380 | + |
| 381 | + # Validate the conversion by creating a model |
| 382 | + format1 = ml.TFLiteFormat(model_source=source1) |
| 383 | + model1 = ml.Model(display_name="SavedModel1", model_format=format1) |
| 384 | + firebase_model = ml.create_model(model1) |
| 385 | + assert firebase_model.model_id is not None |
| 386 | + assert firebase_model.validation_error is None |
| 387 | + |
| 388 | + _clean_up_model(firebase_model) |
| 389 | + _clean_up_tmp_directory() |
0 commit comments