@@ -428,8 +428,8 @@ def prior(
428
428
self ,
429
429
name : str ,
430
430
X : TensorLike ,
431
+ dims : str | None = None ,
431
432
hsgp_coeffs_dims : str | None = None ,
432
- gp_dims : str | None = None ,
433
433
* args ,
434
434
** kwargs ,
435
435
):
@@ -444,10 +444,11 @@ def prior(
444
444
Name of the random variable
445
445
X: array-like
446
446
Function input values.
447
+ dims: str, default None
448
+ Dimension name for the GP random variable.
447
449
hsgp_coeffs_dims: str, default None
448
450
Dimension name for the HSGP basis vectors.
449
- gp_dims: str, default None
450
- Dimension name for the GP random variable.
451
+
451
452
"""
452
453
phi , sqrt_psd = self .prior_linearized (X )
453
454
self ._sqrt_psd = sqrt_psd
@@ -469,7 +470,7 @@ def prior(
469
470
)
470
471
f = self .mean_func (X ) + phi @ self ._beta
471
472
472
- self .f = pm .Deterministic (name , f , dims = gp_dims )
473
+ self .f = pm .Deterministic (name , f , dims = dims )
473
474
return self .f
474
475
475
476
def _build_conditional (self , Xnew ):
@@ -695,7 +696,9 @@ def prior_linearized(self, X: TensorLike):
695
696
psd = self .scale * self .cov_func .power_spectral_density_approx (J )
696
697
return (phi_cos , phi_sin ), psd
697
698
698
- def prior (self , name : str , X : TensorLike , dims : str | None = None ): # type: ignore[override]
699
+ def prior ( # type: ignore[override]
700
+ self , name : str , X : TensorLike , dims : str | None = None , hsgp_coeffs_dims : str | None = None
701
+ ):
699
702
R"""
700
703
Return the (approximate) GP prior distribution evaluated over the input locations `X`.
701
704
@@ -709,11 +712,13 @@ def prior(self, name: str, X: TensorLike, dims: str | None = None): # type: ign
709
712
Function input values.
710
713
dims: None
711
714
Dimension name for the GP random variable.
715
+ hsgp_coeffs_dims: str | None = None
716
+ Dimension name for the HSGPPeriodic basis vectors.
712
717
"""
713
718
(phi_cos , phi_sin ), psd = self .prior_linearized (X )
714
719
715
720
m = self ._m
716
- self ._beta = pm .Normal (f"{ name } _hsgp_coeffs_" , size = (m * 2 - 1 ))
721
+ self ._beta = pm .Normal (f"{ name } _hsgp_coeffs_" , size = (m * 2 - 1 ), dims = hsgp_coeffs_dims )
717
722
# The first eigenfunction for the sine component is zero
718
723
# and so does not contribute to the approximation.
719
724
f = (
0 commit comments