@@ -49,7 +49,7 @@ def get_dummy_components(self):
49
49
torch .manual_seed (0 )
50
50
unet = UNet2DConditionModel (
51
51
block_out_channels = (32 , 64 ),
52
- layers_per_block = 2 ,
52
+ layers_per_block = 1 ,
53
53
sample_size = 32 ,
54
54
in_channels = 4 ,
55
55
out_channels = 4 ,
@@ -101,7 +101,7 @@ def get_dummy_inputs(self, device, seed=0):
101
101
# Setting height and width to None to prevent OOMs on CPU.
102
102
"height" : None ,
103
103
"width" : None ,
104
- "num_inference_steps" : 2 ,
104
+ "num_inference_steps" : 1 ,
105
105
"guidance_scale" : 6.0 ,
106
106
"output_type" : "numpy" ,
107
107
}
@@ -119,10 +119,18 @@ def test_stable_diffusion_panorama_default_case(self):
119
119
image_slice = image [0 , - 3 :, - 3 :, - 1 ]
120
120
assert image .shape == (1 , 64 , 64 , 3 )
121
121
122
- expected_slice = np .array ([0.4794 , 0.5084 , 0.4992 , 0.3941 , 0.3555 , 0.4754 , 0.5248 , 0.5224 , 0.4839 ])
122
+ expected_slice = np .array ([0.6186 , 0.5374 , 0.4915 , 0.4135 , 0.4114 , 0.4563 , 0.5128 , 0.4977 , 0.4757 ])
123
123
124
124
assert np .abs (image_slice .flatten () - expected_slice ).max () < 1e-2
125
125
126
+ # override to speed the overall test timing up.
127
+ def test_inference_batch_consistent (self ):
128
+ super ().test_inference_batch_consistent (batch_sizes = [1 , 2 ])
129
+
130
+ # override to speed the overall test timing up.
131
+ def test_inference_batch_single_identical (self ):
132
+ super ().test_inference_batch_single_identical (batch_size = 2 )
133
+
126
134
def test_stable_diffusion_panorama_negative_prompt (self ):
127
135
device = "cpu" # ensure determinism for the device-dependent torch.Generator
128
136
components = self .get_dummy_components ()
@@ -138,7 +146,7 @@ def test_stable_diffusion_panorama_negative_prompt(self):
138
146
139
147
assert image .shape == (1 , 64 , 64 , 3 )
140
148
141
- expected_slice = np .array ([0.5029 , 0.5075 , 0.5002 , 0.3965 , 0.3584 , 0.4746 , 0.5271 , 0.5273 , 0.4877 ])
149
+ expected_slice = np .array ([0.6187 , 0.5375 , 0.4915 , 0.4136 , 0.4114 , 0.4563 , 0.5128 , 0.4976 , 0.4757 ])
142
150
143
151
assert np .abs (image_slice .flatten () - expected_slice ).max () < 1e-2
144
152
@@ -158,7 +166,7 @@ def test_stable_diffusion_panorama_euler(self):
158
166
159
167
assert image .shape == (1 , 64 , 64 , 3 )
160
168
161
- expected_slice = np .array ([0.4934 , 0.5455 , 0.4847 , 0.5022 , 0.5572 , 0.4833 , 0.5207 , 0.4952 , 0.5051 ])
169
+ expected_slice = np .array ([0.4886 , 0.5586 , 0.4476 , 0.5053 , 0.6013 , 0.4737 , 0.5538 , 0.5100 , 0.4927 ])
162
170
163
171
assert np .abs (image_slice .flatten () - expected_slice ).max () < 1e-2
164
172
0 commit comments