Skip to content

Commit eade430

Browse files
apolinariomultimodalart
and
multimodalart
authored
Update IF name to XL (#3262)
Co-authored-by: multimodalart <[email protected]>
1 parent fa31da2 commit eade430

File tree

8 files changed

+23
-23
lines changed

8 files changed

+23
-23
lines changed

docs/source/en/api/pipelines/if.mdx

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ Our work underscores the potential of larger UNet architectures in the first sta
2929

3030
Before you can use IF, you need to accept its usage conditions. To do so:
3131
1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be logged in
32-
2. Accept the license on the model card of [DeepFloyd/IF-I-IF-v1.0](https://huggingface.co/DeepFloyd/IF-I-IF-v1.0). Accepting the license on the stage I model card will auto accept for the other IF models.
32+
2. Accept the license on the model card of [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0). Accepting the license on the stage I model card will auto accept for the other IF models.
3333
3. Make sure to login locally. Install `huggingface_hub`
3434
```sh
3535
pip install huggingface_hub --upgrade
@@ -62,7 +62,7 @@ The following sections give more in-detail examples of how to use IF. Specifical
6262

6363
**Available checkpoints**
6464
- *Stage-1*
65-
- [DeepFloyd/IF-I-IF-v1.0](https://huggingface.co/DeepFloyd/IF-I-IF-v1.0)
65+
- [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)
6666
- [DeepFloyd/IF-I-L-v1.0](https://huggingface.co/DeepFloyd/IF-I-L-v1.0)
6767
- [DeepFloyd/IF-I-M-v1.0](https://huggingface.co/DeepFloyd/IF-I-M-v1.0)
6868

@@ -90,7 +90,7 @@ from diffusers.utils import pt_to_pil
9090
import torch
9191

9292
# stage 1
93-
stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
93+
stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
9494
stage_1.enable_model_cpu_offload()
9595

9696
# stage 2
@@ -162,7 +162,7 @@ original_image = Image.open(BytesIO(response.content)).convert("RGB")
162162
original_image = original_image.resize((768, 512))
163163

164164
# stage 1
165-
stage_1 = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
165+
stage_1 = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
166166
stage_1.enable_model_cpu_offload()
167167

168168
# stage 2
@@ -244,7 +244,7 @@ mask_image = Image.open(BytesIO(response.content))
244244
mask_image = mask_image
245245

246246
# stage 1
247-
stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
247+
stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
248248
stage_1.enable_model_cpu_offload()
249249

250250
# stage 2
@@ -305,7 +305,7 @@ In addition to being loaded with `from_pretrained`, Pipelines can also be loaded
305305
```python
306306
from diffusers import IFPipeline, IFSuperResolutionPipeline
307307

308-
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0")
308+
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
309309
pipe_2 = IFSuperResolutionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0")
310310

311311

@@ -326,7 +326,7 @@ pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)
326326
The simplest optimization to run IF faster is to move all model components to the GPU.
327327

328328
```py
329-
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
329+
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
330330
pipe.to("cuda")
331331
```
332332

@@ -352,7 +352,7 @@ the input image which also determines how many steps to run in the denoising pro
352352
A smaller number will vary the image less but run faster.
353353

354354
```py
355-
pipe = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
355+
pipe = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
356356
pipe.to("cuda")
357357

358358
image = pipe(image=image, prompt="<prompt>", strength=0.3).images
@@ -364,7 +364,7 @@ with IF and it might not give expected results.
364364
```py
365365
import torch
366366

367-
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
367+
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
368368
pipe.to("cuda")
369369

370370
pipe.text_encoder = torch.compile(pipe.text_encoder)
@@ -378,14 +378,14 @@ When optimizing for GPU memory, we can use the standard diffusers cpu offloading
378378
Either the model based CPU offloading,
379379

380380
```py
381-
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
381+
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
382382
pipe.enable_model_cpu_offload()
383383
```
384384

385385
or the more aggressive layer based CPU offloading.
386386

387387
```py
388-
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
388+
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
389389
pipe.enable_sequential_cpu_offload()
390390
```
391391

@@ -395,13 +395,13 @@ Additionally, T5 can be loaded in 8bit precision
395395
from transformers import T5EncoderModel
396396

397397
text_encoder = T5EncoderModel.from_pretrained(
398-
"DeepFloyd/IF-I-IF-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
398+
"DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
399399
)
400400

401401
from diffusers import DiffusionPipeline
402402

403403
pipe = DiffusionPipeline.from_pretrained(
404-
"DeepFloyd/IF-I-IF-v1.0",
404+
"DeepFloyd/IF-I-XL-v1.0",
405405
text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder
406406
unet=None,
407407
device_map="auto",
@@ -422,13 +422,13 @@ from transformers import T5EncoderModel
422422
from diffusers.utils import pt_to_pil
423423

424424
text_encoder = T5EncoderModel.from_pretrained(
425-
"DeepFloyd/IF-I-IF-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
425+
"DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
426426
)
427427

428428
# text to image
429429

430430
pipe = DiffusionPipeline.from_pretrained(
431-
"DeepFloyd/IF-I-IF-v1.0",
431+
"DeepFloyd/IF-I-XL-v1.0",
432432
text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder
433433
unet=None,
434434
device_map="auto",
@@ -444,7 +444,7 @@ gc.collect()
444444
torch.cuda.empty_cache()
445445

446446
pipe = IFPipeline.from_pretrained(
447-
"DeepFloyd/IF-I-IF-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
447+
"DeepFloyd/IF-I-XL-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
448448
)
449449

450450
generator = torch.Generator().manual_seed(0)

src/diffusers/pipelines/deepfloyd_if/pipeline_if.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@
4141
>>> from diffusers.utils import pt_to_pil
4242
>>> import torch
4343
44-
>>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
44+
>>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
4545
>>> pipe.enable_model_cpu_offload()
4646
4747
>>> prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'

src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image:
7070
>>> original_image = original_image.resize((768, 512))
7171
7272
>>> pipe = IFImg2ImgPipeline.from_pretrained(
73-
... "DeepFloyd/IF-I-IF-v1.0",
73+
... "DeepFloyd/IF-I-XL-v1.0",
7474
... variant="fp16",
7575
... torch_dtype=torch.float16,
7676
... )

src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@ def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image:
7373
>>> original_image = original_image.resize((768, 512))
7474
7575
>>> pipe = IFImg2ImgPipeline.from_pretrained(
76-
... "DeepFloyd/IF-I-IF-v1.0",
76+
... "DeepFloyd/IF-I-XL-v1.0",
7777
... variant="fp16",
7878
... torch_dtype=torch.float16,
7979
... )

src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image:
7676
>>> mask_image = mask_image
7777
7878
>>> pipe = IFInpaintingPipeline.from_pretrained(
79-
... "DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16
79+
... "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16
8080
... )
8181
>>> pipe.enable_model_cpu_offload()
8282

src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image:
7878
>>> mask_image = mask_image
7979
8080
>>> pipe = IFInpaintingPipeline.from_pretrained(
81-
... "DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16
81+
... "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16
8282
... )
8383
>>> pipe.enable_model_cpu_offload()
8484

src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@
4545
>>> from diffusers.utils import pt_to_pil
4646
>>> import torch
4747
48-
>>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
48+
>>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
4949
>>> pipe.enable_model_cpu_offload()
5050
5151
>>> prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'

tests/pipelines/deepfloyd_if/test_if.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -94,7 +94,7 @@ def tearDown(self):
9494
def test_all(self):
9595
# if
9696

97-
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-IF-v1.0", variant="fp16", torch_dtype=torch.float16)
97+
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
9898

9999
pipe_2 = IFSuperResolutionPipeline.from_pretrained(
100100
"DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16, text_encoder=None, tokenizer=None

0 commit comments

Comments
 (0)