|
26 | 26 | * The Hugging Face Hub (https://huggingface.co/timm) is now the primary source for `timm` weights. Model cards include link to papers, original source, license.
|
27 | 27 | * Previous 0.6.x can be cloned from [0.6.x](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) branch or installed via pip with version.
|
28 | 28 |
|
| 29 | +### July 26, 2024 |
| 30 | +* More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models |
| 31 | + |
| 32 | +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| |
| 33 | +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| |
| 34 | +| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.99 |15.01 |97.294|2.706 |32.59 |544 | |
| 35 | +| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.772|15.228 |97.344|2.656 |32.59 |480 | |
| 36 | +| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.64 |15.36 |97.114|2.886 |32.59 |448 | |
| 37 | +| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.314|15.686 |97.102|2.898 |32.59 |384 | |
| 38 | +| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.824|16.176 |96.734|3.266 |32.59 |480 | |
| 39 | +| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.244|16.756 |96.392|3.608 |32.59 |384 | |
| 40 | +| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.99 |17.01 |96.67 |3.33 |11.07 |320 | |
| 41 | +| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.364|17.636 |96.256|3.744 |11.07 |256 | |
| 42 | + |
| 43 | +* Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines) |
| 44 | + |
| 45 | +| model |top1 |top1_err|top5 |top5_err|param_count|img_size| |
| 46 | +|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------| |
| 47 | +| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |79.364|20.636 |94.754|5.246 |5.29 |256 | |
| 48 | +| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |78.584|21.416 |94.338|5.662 |5.29 |224 | |
| 49 | +| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |76.596|23.404 |93.272|6.728 |5.28 |256 | |
| 50 | +| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |76.094|23.906 |93.004|6.996 |4.23 |256 | |
| 51 | +| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |75.662|24.338 |92.504|7.496 |5.28 |224 | |
| 52 | +| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |75.382|24.618 |92.312|7.688 |4.23 |224 | |
| 53 | + |
| 54 | +* Prototype of `set_input_size()` added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation. |
| 55 | +* Improved support in swin for different size handling, in addition to `set_input_size`, `always_partition` and `strict_img_size` args have been added to `__init__` to allow more flexible input size constraints |
| 56 | +* Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same. |
| 57 | +* Add several `tiny` < .5M param models for testing that are actually trained on ImageNet-1k |
| 58 | + |
| 59 | +|model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct| |
| 60 | +|----------------------------|------|--------|------|--------|-----------|--------|--------| |
| 61 | +|test_efficientnet.r160_in1k |47.156|52.844 |71.726|28.274 |0.36 |192 |1.0 | |
| 62 | +|test_byobnet.r160_in1k |46.698|53.302 |71.674|28.326 |0.46 |192 |1.0 | |
| 63 | +|test_efficientnet.r160_in1k |46.426|53.574 |70.928|29.072 |0.36 |160 |0.875 | |
| 64 | +|test_byobnet.r160_in1k |45.378|54.622 |70.572|29.428 |0.46 |160 |0.875 | |
| 65 | +|test_vit.r160_in1k|42.0 |58.0 |68.664|31.336 |0.37 |192 |1.0 | |
| 66 | +|test_vit.r160_in1k|40.822|59.178 |67.212|32.788 |0.37 |160 |0.875 | |
| 67 | + |
| 68 | +* Fix vit reg token init, thanks [Promisery](https://github.com/Promisery) |
| 69 | +* Other misc fixes |
| 70 | + |
29 | 71 | ### June 24, 2024
|
30 | 72 | * 3 more MobileNetV4 hyrid weights with different MQA weight init scheme
|
31 | 73 |
|
|
0 commit comments