@@ -543,8 +543,8 @@ def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True,
543
543
Multiclass option can be either 'ovr' or 'multinomial'. If the option
544
544
chosen is 'ovr', then a binary problem is fit for each label. Else
545
545
the loss minimised is the multinomial loss fit across
546
- the entire probability distribution. Works only for the 'lbfgs' and
547
- 'newton-cg' solvers .
546
+ the entire probability distribution. Does not work for 'liblinear'
547
+ solver .
548
548
549
549
random_state : int, RandomState instance or None, optional, default None
550
550
The seed of the pseudo random number generator to use when shuffling
@@ -864,8 +864,8 @@ def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10,
864
864
Multiclass option can be either 'ovr' or 'multinomial'. If the option
865
865
chosen is 'ovr', then a binary problem is fit for each label. Else
866
866
the loss minimised is the multinomial loss fit across
867
- the entire probability distribution. Does not work for
868
- liblinear solver.
867
+ the entire probability distribution. Does not work for 'liblinear'
868
+ solver.
869
869
870
870
random_state : int, RandomState instance or None, optional, default None
871
871
The seed of the pseudo random number generator to use when shuffling
@@ -1071,7 +1071,7 @@ class LogisticRegression(BaseEstimator, LinearClassifierMixin,
1071
1071
Multiclass option can be either 'ovr' or 'multinomial'. If the option
1072
1072
chosen is 'ovr', then a binary problem is fit for each label. Else
1073
1073
the loss minimised is the multinomial loss fit across
1074
- the entire probability distribution. Does not work for liblinear
1074
+ the entire probability distribution. Does not work for ' liblinear'
1075
1075
solver.
1076
1076
1077
1077
.. versionadded:: 0.18
@@ -1500,8 +1500,8 @@ class LogisticRegressionCV(LogisticRegression, BaseEstimator,
1500
1500
Multiclass option can be either 'ovr' or 'multinomial'. If the option
1501
1501
chosen is 'ovr', then a binary problem is fit for each label. Else
1502
1502
the loss minimised is the multinomial loss fit across
1503
- the entire probability distribution. Works only for the 'newton-cg',
1504
- 'sag', 'saga' and 'lbfgs' solver.
1503
+ the entire probability distribution. Does not work for 'liblinear'
1504
+ solver.
1505
1505
1506
1506
.. versionadded:: 0.18
1507
1507
Stochastic Average Gradient descent solver for 'multinomial' case.
0 commit comments