@@ -3038,8 +3038,8 @@ fn test_blocked_chan_preimage_release() {
3038
3038
let node_chanmgrs = create_node_chanmgrs ( 3 , & node_cfgs, & [ None , None , None ] ) ;
3039
3039
let mut nodes = create_network ( 3 , & node_cfgs, & node_chanmgrs) ;
3040
3040
3041
- create_announced_chan_between_nodes ( & nodes, 0 , 1 ) . 2 ;
3042
- create_announced_chan_between_nodes ( & nodes, 1 , 2 ) . 2 ;
3041
+ create_announced_chan_between_nodes ( & nodes, 0 , 1 ) ;
3042
+ let chan_id_2 = create_announced_chan_between_nodes ( & nodes, 1 , 2 ) . 2 ;
3043
3043
3044
3044
send_payment ( & nodes[ 0 ] , & [ & nodes[ 1 ] , & nodes[ 2 ] ] , 5_000_000 ) ;
3045
3045
@@ -3068,20 +3068,29 @@ fn test_blocked_chan_preimage_release() {
3068
3068
let as_htlc_fulfill_updates = get_htlc_update_msgs ! ( nodes[ 0 ] , nodes[ 1 ] . node. get_our_node_id( ) ) ;
3069
3069
nodes[ 1 ] . node . handle_update_fulfill_htlc ( & nodes[ 0 ] . node . get_our_node_id ( ) , & as_htlc_fulfill_updates. update_fulfill_htlcs [ 0 ] ) ;
3070
3070
check_added_monitors ( & nodes[ 1 ] , 1 ) ; // We generate only a preimage monitor update
3071
+ assert ! ( get_monitor!( nodes[ 1 ] , chan_id_2) . get_stored_preimages( ) . contains_key( & payment_hash_2) ) ;
3071
3072
assert ! ( nodes[ 1 ] . node. get_and_clear_pending_msg_events( ) . is_empty( ) ) ;
3072
3073
3073
- // Finish the CS dance between nodes[0] and nodes[1].
3074
- do_commitment_signed_dance ( & nodes[ 1 ] , & nodes[ 0 ] , & as_htlc_fulfill_updates. commitment_signed , false , false ) ;
3074
+ // Finish the CS dance between nodes[0] and nodes[1]. Note that until the event handling, the
3075
+ // update_fulfill_htlc + CS is held, even though the preimage is already on disk for the
3076
+ // channel.
3077
+ nodes[ 1 ] . node . handle_commitment_signed ( & nodes[ 0 ] . node . get_our_node_id ( ) , & as_htlc_fulfill_updates. commitment_signed ) ;
3078
+ check_added_monitors ( & nodes[ 1 ] , 1 ) ;
3079
+ let ( a, raa) = do_main_commitment_signed_dance ( & nodes[ 1 ] , & nodes[ 0 ] , false ) ;
3080
+ assert ! ( a. is_none( ) ) ;
3081
+
3082
+ nodes[ 1 ] . node . handle_revoke_and_ack ( & nodes[ 0 ] . node . get_our_node_id ( ) , & raa) ;
3075
3083
check_added_monitors ( & nodes[ 1 ] , 0 ) ;
3084
+ assert ! ( nodes[ 1 ] . node. get_and_clear_pending_msg_events( ) . is_empty( ) ) ;
3076
3085
3077
3086
let events = nodes[ 1 ] . node . get_and_clear_pending_events ( ) ;
3078
3087
assert_eq ! ( events. len( ) , 3 ) ;
3079
3088
if let Event :: PaymentSent { .. } = events[ 0 ] { } else { panic ! ( ) ; }
3080
3089
if let Event :: PaymentPathSuccessful { .. } = events[ 2 ] { } else { panic ! ( ) ; }
3081
3090
if let Event :: PaymentForwarded { .. } = events[ 1 ] { } else { panic ! ( ) ; }
3082
3091
3083
- // The event processing should release the last RAA update .
3084
- check_added_monitors ( & nodes[ 1 ] , 1 ) ;
3092
+ // The event processing should release the last RAA updates on both channels .
3093
+ check_added_monitors ( & nodes[ 1 ] , 2 ) ;
3085
3094
3086
3095
// When we fetch the next update the message getter will generate the next update for nodes[2],
3087
3096
// generating a further monitor update.
@@ -3092,3 +3101,128 @@ fn test_blocked_chan_preimage_release() {
3092
3101
do_commitment_signed_dance ( & nodes[ 2 ] , & nodes[ 1 ] , & bs_htlc_fulfill_updates. commitment_signed , false , false ) ;
3093
3102
expect_payment_sent ( & nodes[ 2 ] , payment_preimage_2, None , true , true ) ;
3094
3103
}
3104
+
3105
+ fn do_test_inverted_mon_completion_order ( complete_bc_commitment_dance : bool ) {
3106
+ // When we forward a payment and receive an `update_fulfill_htlc` message from the downstream
3107
+ // channel, we immediately claim the HTLC on the upstream channel, before even doing a
3108
+ // `commitment_signed` dance on the downstream channel. This implies that our
3109
+ // `ChannelMonitorUpdate`s are generated in the right order - first we ensure we'll get our
3110
+ // money, then we write the update that resolves giving money on the downstream node. This is
3111
+ // safe as long as `ChannelMonitorUpdate`s complete in the order in which they are generated,
3112
+ // but of course this may not be the case. For asynchronous update writes, we have to ensure
3113
+ // monitor updates can block each other, preventing the inversion all together.
3114
+ let chanmon_cfgs = create_chanmon_cfgs ( 3 ) ;
3115
+ let node_cfgs = create_node_cfgs ( 3 , & chanmon_cfgs) ;
3116
+
3117
+ let persister;
3118
+ let new_chain_monitor;
3119
+ let nodes_1_deserialized;
3120
+
3121
+ let node_chanmgrs = create_node_chanmgrs ( 3 , & node_cfgs, & [ None , None , None ] ) ;
3122
+ let mut nodes = create_network ( 3 , & node_cfgs, & node_chanmgrs) ;
3123
+
3124
+ let chan_id_ab = create_announced_chan_between_nodes ( & nodes, 0 , 1 ) . 2 ;
3125
+ let chan_id_bc = create_announced_chan_between_nodes ( & nodes, 1 , 2 ) . 2 ;
3126
+
3127
+ // Route a payment from A, through B, to C, then claim it on C. Once we pass B the
3128
+ // `update_fulfill_htlc` we have a monitor update for both of B's channels. We complete the one
3129
+ // on the B<->C channel but leave the A<->B monitor update pending, then reload B.
3130
+ let ( payment_preimage, payment_hash, _) = route_payment ( & nodes[ 0 ] , & [ & nodes[ 1 ] , & nodes[ 2 ] ] , 100_000 ) ;
3131
+
3132
+ let mon_ab = get_monitor ! ( nodes[ 1 ] , chan_id_ab) . encode ( ) ;
3133
+
3134
+ nodes[ 2 ] . node . claim_funds ( payment_preimage) ;
3135
+ check_added_monitors ( & nodes[ 2 ] , 1 ) ;
3136
+ expect_payment_claimed ! ( nodes[ 2 ] , payment_hash, 100_000 ) ;
3137
+
3138
+ chanmon_cfgs[ 1 ] . persister . set_update_ret ( ChannelMonitorUpdateStatus :: InProgress ) ;
3139
+ let cs_updates = get_htlc_update_msgs ( & nodes[ 2 ] , & nodes[ 1 ] . node . get_our_node_id ( ) ) ;
3140
+ nodes[ 1 ] . node . handle_update_fulfill_htlc ( & nodes[ 2 ] . node . get_our_node_id ( ) , & cs_updates. update_fulfill_htlcs [ 0 ] ) ;
3141
+
3142
+ // B generates a new monitor update for the A <-> B channel, but doesn't send the new messages
3143
+ // for it since the monitor update is marked in-progress.
3144
+ check_added_monitors ( & nodes[ 1 ] , 1 ) ;
3145
+ assert ! ( nodes[ 1 ] . node. get_and_clear_pending_msg_events( ) . is_empty( ) ) ;
3146
+
3147
+ // Now step the Commitment Signed Dance between B and C forward a bit (or fully), ensuring we
3148
+ // won't get the preimage when the nodes reconnect and we have to get it from the
3149
+ // ChannelMonitor.
3150
+ nodes[ 1 ] . node . handle_commitment_signed ( & nodes[ 2 ] . node . get_our_node_id ( ) , & cs_updates. commitment_signed ) ;
3151
+ check_added_monitors ( & nodes[ 1 ] , 1 ) ;
3152
+ if complete_bc_commitment_dance {
3153
+ let ( bs_revoke_and_ack, bs_commitment_signed) = get_revoke_commit_msgs ! ( nodes[ 1 ] , nodes[ 2 ] . node. get_our_node_id( ) ) ;
3154
+ nodes[ 2 ] . node . handle_revoke_and_ack ( & nodes[ 1 ] . node . get_our_node_id ( ) , & bs_revoke_and_ack) ;
3155
+ check_added_monitors ( & nodes[ 2 ] , 1 ) ;
3156
+ nodes[ 2 ] . node . handle_commitment_signed ( & nodes[ 1 ] . node . get_our_node_id ( ) , & bs_commitment_signed) ;
3157
+ check_added_monitors ( & nodes[ 2 ] , 1 ) ;
3158
+ let cs_raa = get_event_msg ! ( nodes[ 2 ] , MessageSendEvent :: SendRevokeAndACK , nodes[ 1 ] . node. get_our_node_id( ) ) ;
3159
+
3160
+ // At this point node B still hasn't persisted the `ChannelMonitorUpdate` with the
3161
+ // preimage in the A <-> B channel, which will prevent it from persisting the
3162
+ // `ChannelMonitorUpdate` for the B<->C channel here to avoid "losing" the preimage.
3163
+ nodes[ 1 ] . node . handle_revoke_and_ack ( & nodes[ 2 ] . node . get_our_node_id ( ) , & cs_raa) ;
3164
+ check_added_monitors ( & nodes[ 1 ] , 0 ) ;
3165
+ assert ! ( nodes[ 1 ] . node. get_and_clear_pending_msg_events( ) . is_empty( ) ) ;
3166
+ }
3167
+
3168
+ // Now reload node B
3169
+ let manager_b = nodes[ 1 ] . node . encode ( ) ;
3170
+
3171
+ let mon_bc = get_monitor ! ( nodes[ 1 ] , chan_id_bc) . encode ( ) ;
3172
+ reload_node ! ( nodes[ 1 ] , & manager_b, & [ & mon_ab, & mon_bc] , persister, new_chain_monitor, nodes_1_deserialized) ;
3173
+
3174
+ nodes[ 0 ] . node . peer_disconnected ( & nodes[ 1 ] . node . get_our_node_id ( ) ) ;
3175
+ nodes[ 2 ] . node . peer_disconnected ( & nodes[ 1 ] . node . get_our_node_id ( ) ) ;
3176
+
3177
+ // If we used the latest ChannelManager to reload from, we should have both channels still
3178
+ // live. The B <-> C channel's final RAA ChannelMonitorUpdate must still be blocked as
3179
+ // before - the ChannelMonitorUpdate for the A <-> B channel hasn't completed.
3180
+ // When we call `timer_tick_occurred` we will get that monitor update back, which we'll
3181
+ // complete after reconnecting to our peers.
3182
+ persister. set_update_ret ( ChannelMonitorUpdateStatus :: InProgress ) ;
3183
+ nodes[ 1 ] . node . timer_tick_occurred ( ) ;
3184
+ check_added_monitors ( & nodes[ 1 ] , 1 ) ;
3185
+ assert ! ( nodes[ 1 ] . node. get_and_clear_pending_msg_events( ) . is_empty( ) ) ;
3186
+
3187
+ // Now reconnect B to both A and C. If the B <-> C commitment signed dance wasn't run to
3188
+ // the end go ahead and do that, though the
3189
+ // `pending_responding_commitment_signed_dup_monitor` in `reconnect_args` indicates that we
3190
+ // expect to *not* receive the final RAA ChannelMonitorUpdate.
3191
+ if complete_bc_commitment_dance {
3192
+ reconnect_nodes ( ReconnectArgs :: new ( & nodes[ 1 ] , & nodes[ 2 ] ) ) ;
3193
+ } else {
3194
+ let mut reconnect_args = ReconnectArgs :: new ( & nodes[ 1 ] , & nodes[ 2 ] ) ;
3195
+ reconnect_args. pending_responding_commitment_signed . 1 = true ;
3196
+ reconnect_args. pending_responding_commitment_signed_dup_monitor . 1 = true ;
3197
+ reconnect_args. pending_raa = ( false , true ) ;
3198
+ reconnect_nodes ( reconnect_args) ;
3199
+ }
3200
+
3201
+ reconnect_nodes ( ReconnectArgs :: new ( & nodes[ 0 ] , & nodes[ 1 ] ) ) ;
3202
+
3203
+ // (Finally) complete the A <-> B ChannelMonitorUpdate, ensuring the preimage is durably on
3204
+ // disk in the proper ChannelMonitor, unblocking the B <-> C ChannelMonitor updating
3205
+ // process.
3206
+ let ( outpoint, _, ab_update_id) = nodes[ 1 ] . chain_monitor . latest_monitor_update_id . lock ( ) . unwrap ( ) . get ( & chan_id_ab) . unwrap ( ) . clone ( ) ;
3207
+ nodes[ 1 ] . chain_monitor . chain_monitor . channel_monitor_updated ( outpoint, ab_update_id) . unwrap ( ) ;
3208
+
3209
+ // When we fetch B's HTLC update messages here (now that the ChannelMonitorUpdate has
3210
+ // completed), it will also release the final RAA ChannelMonitorUpdate on the B <-> C
3211
+ // channel.
3212
+ let bs_updates = get_htlc_update_msgs ( & nodes[ 1 ] , & nodes[ 0 ] . node . get_our_node_id ( ) ) ;
3213
+ check_added_monitors ( & nodes[ 1 ] , 1 ) ;
3214
+
3215
+ nodes[ 0 ] . node . handle_update_fulfill_htlc ( & nodes[ 1 ] . node . get_our_node_id ( ) , & bs_updates. update_fulfill_htlcs [ 0 ] ) ;
3216
+ do_commitment_signed_dance ( & nodes[ 0 ] , & nodes[ 1 ] , & bs_updates. commitment_signed , false , false ) ;
3217
+
3218
+ expect_payment_forwarded ! ( nodes[ 1 ] , & nodes[ 0 ] , & nodes[ 2 ] , Some ( 1_000 ) , false , false ) ;
3219
+
3220
+ // Finally, check that the payment was, ultimately, seen as sent by node A.
3221
+ expect_payment_sent ( & nodes[ 0 ] , payment_preimage, None , true , true ) ;
3222
+ }
3223
+
3224
+ #[ test]
3225
+ fn test_inverted_mon_completion_order ( ) {
3226
+ do_test_inverted_mon_completion_order ( true ) ;
3227
+ do_test_inverted_mon_completion_order ( false ) ;
3228
+ }
0 commit comments