@@ -231,36 +231,71 @@ static void writePltHeaderLong(uint8_t *buf) {
231
231
// The default PLT header requires the .got.plt to be within 128 Mb of the
232
232
// .plt in the positive direction.
233
233
void ARM::writePltHeader (uint8_t *buf) const {
234
- // Use a similar sequence to that in writePlt(), the difference is the calling
235
- // conventions mean we use lr instead of ip. The PLT entry is responsible for
236
- // saving lr on the stack, the dynamic loader is responsible for reloading
237
- // it.
238
- const uint32_t pltData[] = {
239
- 0xe52de004 , // L1: str lr, [sp,#-4]!
240
- 0xe28fe600 , // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
241
- 0xe28eea00 , // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
242
- 0xe5bef000 , // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
243
- };
244
-
245
- uint64_t offset = in.gotPlt ->getVA () - in.plt ->getVA () - 4 ;
246
- if (!llvm::isUInt<27 >(offset)) {
247
- // We cannot encode the Offset, use the long form.
248
- writePltHeaderLong (buf);
249
- return ;
234
+ if (config->armThumbPLTs ) {
235
+ // The instruction sequence for thumb:
236
+ //
237
+ // 0: b500 push {lr}
238
+ // 2: f8df e008 ldr.w lr, [pc, #0x8] @ 0xe <func+0xe>
239
+ // 6: 44fe add lr, pc
240
+ // 8: f85e ff08 ldr pc, [lr, #8]!
241
+ // e: .word .got.plt - .plt - 16
242
+ //
243
+ // At 0x8, we want to jump to .got.plt, the -16 accounts for 8 bytes from
244
+ // `pc` in the add instruction and 8 bytes for the `lr` adjustment.
245
+ //
246
+ uint64_t offset = in.gotPlt ->getVA () - in.plt ->getVA () - 16 ;
247
+ assert (llvm::isUInt<32 >(offset) && " This should always fit into a 32-bit offset" );
248
+ write16 (buf + 0 , 0xb500 );
249
+ // Split into two halves to support endianness correctly.
250
+ write16 (buf + 2 , 0xf8df );
251
+ write16 (buf + 4 , 0xe008 );
252
+ write16 (buf + 6 , 0x44fe );
253
+ // Split into two halves to support endianness correctly.
254
+ write16 (buf + 8 , 0xf85e );
255
+ write16 (buf + 10 , 0xff08 );
256
+ write32 (buf + 12 , offset);
257
+
258
+ memcpy (buf + 16 , trapInstr.data (), 4 ); // Pad to 32-byte boundary
259
+ memcpy (buf + 20 , trapInstr.data (), 4 );
260
+ memcpy (buf + 24 , trapInstr.data (), 4 );
261
+ memcpy (buf + 28 , trapInstr.data (), 4 );
262
+ } else {
263
+ // Use a similar sequence to that in writePlt(), the difference is the
264
+ // calling conventions mean we use lr instead of ip. The PLT entry is
265
+ // responsible for saving lr on the stack, the dynamic loader is responsible
266
+ // for reloading it.
267
+ const uint32_t pltData[] = {
268
+ 0xe52de004 , // L1: str lr, [sp,#-4]!
269
+ 0xe28fe600 , // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
270
+ 0xe28eea00 , // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
271
+ 0xe5bef000 , // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
272
+ };
273
+
274
+ uint64_t offset = in.gotPlt ->getVA () - in.plt ->getVA () - 4 ;
275
+ if (!llvm::isUInt<27 >(offset)) {
276
+ // We cannot encode the Offset, use the long form.
277
+ writePltHeaderLong (buf);
278
+ return ;
279
+ }
280
+ write32 (buf + 0 , pltData[0 ]);
281
+ write32 (buf + 4 , pltData[1 ] | ((offset >> 20 ) & 0xff ));
282
+ write32 (buf + 8 , pltData[2 ] | ((offset >> 12 ) & 0xff ));
283
+ write32 (buf + 12 , pltData[3 ] | (offset & 0xfff ));
284
+ memcpy (buf + 16 , trapInstr.data (), 4 ); // Pad to 32-byte boundary
285
+ memcpy (buf + 20 , trapInstr.data (), 4 );
286
+ memcpy (buf + 24 , trapInstr.data (), 4 );
287
+ memcpy (buf + 28 , trapInstr.data (), 4 );
250
288
}
251
- write32 (buf + 0 , pltData[0 ]);
252
- write32 (buf + 4 , pltData[1 ] | ((offset >> 20 ) & 0xff ));
253
- write32 (buf + 8 , pltData[2 ] | ((offset >> 12 ) & 0xff ));
254
- write32 (buf + 12 , pltData[3 ] | (offset & 0xfff ));
255
- memcpy (buf + 16 , trapInstr.data (), 4 ); // Pad to 32-byte boundary
256
- memcpy (buf + 20 , trapInstr.data (), 4 );
257
- memcpy (buf + 24 , trapInstr.data (), 4 );
258
- memcpy (buf + 28 , trapInstr.data (), 4 );
259
289
}
260
290
261
291
void ARM::addPltHeaderSymbols (InputSection &isec) const {
262
- addSyntheticLocal (" $a" , STT_NOTYPE, 0 , 0 , isec);
263
- addSyntheticLocal (" $d" , STT_NOTYPE, 16 , 0 , isec);
292
+ if (config->armThumbPLTs ) {
293
+ addSyntheticLocal (" $t" , STT_NOTYPE, 0 , 0 , isec);
294
+ addSyntheticLocal (" $d" , STT_NOTYPE, 12 , 0 , isec);
295
+ } else {
296
+ addSyntheticLocal (" $a" , STT_NOTYPE, 0 , 0 , isec);
297
+ addSyntheticLocal (" $d" , STT_NOTYPE, 16 , 0 , isec);
298
+ }
264
299
}
265
300
266
301
// Long form PLT entries that do not have any restrictions on the displacement
@@ -279,32 +314,65 @@ static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
279
314
// .plt in the positive direction.
280
315
void ARM::writePlt (uint8_t *buf, const Symbol &sym,
281
316
uint64_t pltEntryAddr) const {
282
- // The PLT entry is similar to the example given in Appendix A of ELF for
283
- // the Arm Architecture. Instead of using the Group Relocations to find the
284
- // optimal rotation for the 8-bit immediate used in the add instructions we
285
- // hard code the most compact rotations for simplicity. This saves a load
286
- // instruction over the long plt sequences.
287
- const uint32_t pltData[] = {
288
- 0xe28fc600 , // L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8
289
- 0xe28cca00 , // add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8
290
- 0xe5bcf000 , // ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
291
- };
292
317
293
- uint64_t offset = sym.getGotPltVA () - pltEntryAddr - 8 ;
294
- if (!llvm::isUInt<27 >(offset)) {
295
- // We cannot encode the Offset, use the long form.
296
- writePltLong (buf, sym.getGotPltVA (), pltEntryAddr);
297
- return ;
318
+ if (!config->armThumbPLTs ) {
319
+ uint64_t offset = sym.getGotPltVA () - pltEntryAddr - 8 ;
320
+
321
+ // The PLT entry is similar to the example given in Appendix A of ELF for
322
+ // the Arm Architecture. Instead of using the Group Relocations to find the
323
+ // optimal rotation for the 8-bit immediate used in the add instructions we
324
+ // hard code the most compact rotations for simplicity. This saves a load
325
+ // instruction over the long plt sequences.
326
+ const uint32_t pltData[] = {
327
+ 0xe28fc600 , // L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8
328
+ 0xe28cca00 , // add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8
329
+ 0xe5bcf000 , // ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
330
+ };
331
+ if (!llvm::isUInt<27 >(offset)) {
332
+ // We cannot encode the Offset, use the long form.
333
+ writePltLong (buf, sym.getGotPltVA (), pltEntryAddr);
334
+ return ;
335
+ }
336
+ write32 (buf + 0 , pltData[0 ] | ((offset >> 20 ) & 0xff ));
337
+ write32 (buf + 4 , pltData[1 ] | ((offset >> 12 ) & 0xff ));
338
+ write32 (buf + 8 , pltData[2 ] | (offset & 0xfff ));
339
+ memcpy (buf + 12 , trapInstr.data (), 4 ); // Pad to 16-byte boundary
340
+ } else {
341
+ uint64_t offset = sym.getGotPltVA () - pltEntryAddr - 12 ;
342
+ assert (llvm::isUInt<32 >(offset) && " This should always fit into a 32-bit offset" );
343
+
344
+ // A PLT entry will be:
345
+ //
346
+ // movw ip, #<lower 16 bits>
347
+ // movt ip, #<upper 16 bits>
348
+ // add ip, pc
349
+ // L1: ldr.w pc, [ip]
350
+ // b L1
351
+ //
352
+ // where ip = r12 = 0xc
353
+
354
+ // movw ip, #<lower 16 bits>
355
+ write16 (buf + 2 , 0x0c00 ); // use `ip`
356
+ relocateNoSym (buf, R_ARM_THM_MOVW_ABS_NC, offset);
357
+
358
+ // movt ip, #<upper 16 bits>
359
+ write16 (buf + 6 , 0x0c00 ); // use `ip`
360
+ relocateNoSym (buf + 4 , R_ARM_THM_MOVT_ABS, offset);
361
+
362
+ write16 (buf + 8 , 0x44fc ); // add ip, pc
363
+ write16 (buf + 10 , 0xf8dc ); // ldr.w pc, [ip] (bottom half)
364
+ write16 (buf + 12 , 0xf000 ); // ldr.w pc, [ip] (upper half)
365
+ write16 (buf + 14 , 0xe7fc ); // Branch to previous instruction
298
366
}
299
- write32 (buf + 0 , pltData[0 ] | ((offset >> 20 ) & 0xff ));
300
- write32 (buf + 4 , pltData[1 ] | ((offset >> 12 ) & 0xff ));
301
- write32 (buf + 8 , pltData[2 ] | (offset & 0xfff ));
302
- memcpy (buf + 12 , trapInstr.data (), 4 ); // Pad to 16-byte boundary
303
367
}
304
368
305
369
void ARM::addPltSymbols (InputSection &isec, uint64_t off) const {
306
- addSyntheticLocal (" $a" , STT_NOTYPE, off, 0 , isec);
307
- addSyntheticLocal (" $d" , STT_NOTYPE, off + 12 , 0 , isec);
370
+ if (config->armThumbPLTs ) {
371
+ addSyntheticLocal (" $t" , STT_NOTYPE, off, 0 , isec);
372
+ } else {
373
+ addSyntheticLocal (" $a" , STT_NOTYPE, off, 0 , isec);
374
+ addSyntheticLocal (" $d" , STT_NOTYPE, off + 12 , 0 , isec);
375
+ }
308
376
}
309
377
310
378
bool ARM::needsThunk (RelExpr expr, RelType type, const InputFile *file,
@@ -325,6 +393,8 @@ bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
325
393
case R_ARM_JUMP24:
326
394
// Source is ARM, all PLT entries are ARM so no interworking required.
327
395
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
396
+ assert (!config->armThumbPLTs &&
397
+ " If the source is ARM, we should not need Thumb PLTs" );
328
398
if (s.isFunc () && expr == R_PC && (s.getVA () & 1 ))
329
399
return true ;
330
400
[[fallthrough]];
@@ -335,9 +405,9 @@ bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
335
405
}
336
406
case R_ARM_THM_JUMP19:
337
407
case R_ARM_THM_JUMP24:
338
- // Source is Thumb, all PLT entries are ARM so interworking is required.
408
+ // Source is Thumb, when all PLT entries are ARM interworking is required.
339
409
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
340
- if (expr == R_PLT_PC || (s.isFunc () && (s.getVA () & 1 ) == 0 ))
410
+ if (( expr == R_PLT_PC && !config-> armThumbPLTs ) || (s.isFunc () && (s.getVA () & 1 ) == 0 ))
341
411
return true ;
342
412
[[fallthrough]];
343
413
case R_ARM_THM_CALL: {
@@ -547,7 +617,6 @@ void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
547
617
// STT_FUNC we choose whether to write a BL or BLX depending on the
548
618
// value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
549
619
// not of type STT_FUNC then we must preserve the original instruction.
550
- // PLT entries are always ARM state so we know we don't need to interwork.
551
620
assert (rel.sym ); // R_ARM_CALL is always reached via relocate().
552
621
bool bit0Thumb = val & 1 ;
553
622
bool isBlx = (read32 (loc) & 0xfe000000 ) == 0xfa000000 ;
@@ -606,12 +675,13 @@ void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
606
675
// PLT entries are always ARM state so we know we need to interwork.
607
676
assert (rel.sym ); // R_ARM_THM_CALL is always reached via relocate().
608
677
bool bit0Thumb = val & 1 ;
678
+ bool useThumb = bit0Thumb || config->armThumbPLTs ;
609
679
bool isBlx = (read16 (loc + 2 ) & 0x1000 ) == 0 ;
610
680
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
611
- // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
612
- if (!rel.sym ->isFunc () && !rel.sym ->isInPlt () && isBlx == bit0Thumb )
681
+ // even when type not STT_FUNC.
682
+ if (!rel.sym ->isFunc () && !rel.sym ->isInPlt () && isBlx == useThumb )
613
683
stateChangeWarning (loc, rel.type , *rel.sym );
614
- if (rel.sym ->isFunc () || rel.sym ->isInPlt () ? !bit0Thumb : isBlx) {
684
+ if (( rel.sym ->isFunc () || rel.sym ->isInPlt ()) ? !useThumb : isBlx) {
615
685
// We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
616
686
// the BLX instruction may only be two byte aligned. This must be done
617
687
// before overflow check.
0 commit comments