|
| 1 | +// DEFINE: %{compile} = mlir-opt %s \ |
| 2 | +// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule |\ |
| 3 | +// DEFINE: mlir-opt --test-linalg-transform-patterns="test-generalize-tensor-pack"\ |
| 4 | +// DEFINE: --test-transform-dialect-erase-schedule \ |
| 5 | +// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" \ |
| 6 | +// DEFINE: -buffer-deallocation-pipeline="private-function-dynamic-ownership" \ |
| 7 | +// DEFINE: -cse -canonicalize -test-lower-to-llvm -o %t |
| 8 | +// DEFINE: %{entry_point} = main |
| 9 | +// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void \ |
| 10 | +// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils |
| 11 | + |
| 12 | +// RUN: rm -f %t && %{compile} && %{run} | FileCheck %s |
| 13 | + |
| 14 | +/// End-to-end test for tensor.pack where one of the inner tile sizes is |
| 15 | +/// dynamic. |
| 16 | +/// |
| 17 | +/// Note, ATM this is a relatively simple example, with no vectorization and |
| 18 | +/// the dynamic tile size being a compile-time constant. The intention is to |
| 19 | +/// incrementally expand the config to something much more complex. |
| 20 | + |
| 21 | +func.func @main() { |
| 22 | + // Allocate and initialise the inputs |
| 23 | + %A_alloc = tensor.empty() : tensor<7x16xi32> |
| 24 | + |
| 25 | + %A = arith.constant dense<[ |
| 26 | + [ 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99 , 106], |
| 27 | + [ 2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107], |
| 28 | + [ 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 94, 101, 108], |
| 29 | + [ 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109], |
| 30 | + [ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110], |
| 31 | + [ 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111], |
| 32 | + [ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112] |
| 33 | + ]> : tensor<7x16xi32> |
| 34 | + |
| 35 | + func.call @pack(%A) : (tensor<7x16xi32>) -> () |
| 36 | + |
| 37 | + return |
| 38 | +} |
| 39 | + |
| 40 | +func.func private @pack(%A: tensor<7x16xi32>) { |
| 41 | + %c1 = arith.constant 1 : index |
| 42 | + %pad_val = arith.constant 123 : i32 |
| 43 | + |
| 44 | + // Dynamic tile size |
| 45 | + %tile_size = arith.constant 8 : index |
| 46 | + %A_pack_empty = tensor.empty(%c1, %tile_size) : tensor<?x16x?x1xi32> |
| 47 | + |
| 48 | + %A_pack = tensor.pack %A |
| 49 | + padding_value(%pad_val : i32) |
| 50 | + inner_dims_pos = [0, 1] |
| 51 | + inner_tiles = [%tile_size, 1] |
| 52 | + into %A_pack_empty : tensor<7x16xi32> -> tensor<?x16x?x1xi32> |
| 53 | + %A_cast = tensor.cast %A_pack : tensor<?x16x?x1xi32> to tensor<*xi32> |
| 54 | + |
| 55 | + // Print the results |
| 56 | + // CHECK: Unranked Memref base@ = 0{{.*}} rank = 4 offset = 0 sizes = [1, 16, 8, 1] strides = [128, 8, 1, 1] data = |
| 57 | + // Tile 1: (8 x 1) |
| 58 | + // CHECK-NEXT: 1 |
| 59 | + // CHECK-NEXT: 2 |
| 60 | + // CHECK-NEXT: 3 |
| 61 | + // CHECK-NEXT: 4 |
| 62 | + // CHECK-NEXT: 5 |
| 63 | + // CHECK-NEXT: 6 |
| 64 | + // CHECK-NEXT: 7 |
| 65 | + // Expect pad value after 7 elements |
| 66 | + // CHECK-NEXT: 123 |
| 67 | + // Tile 2: (8 x 1) |
| 68 | + // CHECK-NEXT: 8 |
| 69 | + // CHECK-NEXT: 9 |
| 70 | + // CHECK-NEXT: 10 |
| 71 | + // CHECK-NEXT: 11 |
| 72 | + // CHECK-NEXT: 12 |
| 73 | + // CHECK-NEXT: 13 |
| 74 | + // CHECK-NEXT: 14 |
| 75 | + // Expect pad value after further 7 elements |
| 76 | + // CHECK-NEXT: 123 |
| 77 | + // Tile 3: (8 x 1) |
| 78 | + // CHECK-NEXT: 15 |
| 79 | + // CHECK-NEXT: 16 |
| 80 | + // ... |
| 81 | + call @printMemrefI32(%A_cast) : (tensor<*xi32>) -> () |
| 82 | + |
| 83 | + return |
| 84 | +} |
| 85 | + |
| 86 | +module @transforms attributes { transform.with_named_sequence } { |
| 87 | + transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) { |
| 88 | + %pack = transform.structured.match ops{["tensor.pack"]} in %module : (!transform.any_op) -> !transform.any_op |
| 89 | + |
| 90 | + %tiled_linalg_op_p, %loops:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1] |
| 91 | + : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) |
| 92 | + |
| 93 | + transform.yield |
| 94 | + } |
| 95 | +} |
| 96 | + |
| 97 | +func.func private @printMemrefI32(%ptr : tensor<*xi32>) |
0 commit comments