You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Simplifies the vectorization of tensor.extract so that:
* all cases that read into a genuinely multi-dim vector (*) are
considered a gather load,
* all other cases are considered as potential contiguous loads.
This change means that the following extraction from a "column" tensor
will be correctly identified as a scalar load followed by a broadcast (rather
than a gather load).
```mlir
func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
%c4 = arith.constant 4 : index
%c0 = arith.constant 0 : index
%cst = arith.constant dense<[...]> : tensor<15x1xi32>
%out = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
iterator_types = ["parallel", "parallel", "parallel"]}
outs(%in : tensor<1x1x4xi32>) {
^bb0(%out: i32):
%idx_0 = linalg.index 0 : index
%extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32>
linalg.yield %extracted : i32
} -> tensor<1x1x4xi32>
return %out:tensor<1x1x4xi32>
}
```
(*) `vector<1x4x1xf32>` is considered as 1D vector in this context.
0 commit comments