|
| 1 | +// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s |
| 2 | + |
| 3 | +///---------------------------------------------------------------------------------------- |
| 4 | +/// [Pattern: PadOpVectorizationWithTransferReadPattern] |
| 5 | +///---------------------------------------------------------------------------------------- |
| 6 | +// CHECK-LABEL: func @pad_and_transfer_read |
| 7 | +// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32> |
| 8 | +// CHECK-NOT: tensor.pad |
| 9 | +// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index |
| 10 | +// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0 |
| 11 | +// CHECK: %[[RESULT:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32> |
| 12 | +// CHECK: return %[[RESULT]] |
| 13 | +func.func @pad_and_transfer_read(%arg0: tensor<5x6xf32>) -> vector<7x9xf32> { |
| 14 | + %c0 = arith.constant 0 : index |
| 15 | + %c5 = arith.constant 5.0 : f32 |
| 16 | + %c6 = arith.constant 6.0 : f32 |
| 17 | + %0 = tensor.pad %arg0 low[0, 0] high[5, 7] { |
| 18 | + ^bb0(%arg1: index, %arg2: index): |
| 19 | + tensor.yield %c5 : f32 |
| 20 | + } : tensor<5x6xf32> to tensor<10x13xf32> |
| 21 | + %1 = vector.transfer_read %0[%c0, %c0], %c6 |
| 22 | + : tensor<10x13xf32>, vector<7x9xf32> |
| 23 | + return %1 : vector<7x9xf32> |
| 24 | +} |
| 25 | + |
| 26 | +module attributes {transform.with_named_sequence} { |
| 27 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 28 | + %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func"> |
| 29 | + |
| 30 | + transform.apply_patterns to %func_op { |
| 31 | + transform.apply_patterns.linalg.pad_vectorization |
| 32 | + } : !transform.op<"func.func"> |
| 33 | + transform.yield |
| 34 | + } |
| 35 | +} |
| 36 | + |
| 37 | +// ----- |
| 38 | + |
| 39 | +///---------------------------------------------------------------------------------------- |
| 40 | +/// [Pattern: PadOpVectorizationWithTransferWritePattern] |
| 41 | +///---------------------------------------------------------------------------------------- |
| 42 | +func.func private @make_vector() -> vector<7x9xf32> |
| 43 | + |
| 44 | +// CHECK-LABEL: func @pad_and_transfer_write_static_low_and_high |
| 45 | +// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32> |
| 46 | +// CHECK-NOT: tensor.pad |
| 47 | +// CHECK: %[[C0:.*]] = arith.constant 0 : index |
| 48 | +// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32> |
| 49 | +// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[ARG0]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<5x6xf32> |
| 50 | +// CHECK: return %[[RESULT]] |
| 51 | +func.func @pad_and_transfer_write_static_low_and_high( |
| 52 | + %arg0: tensor<5x6xf32>) -> tensor<5x6xf32> { |
| 53 | + %c0 = arith.constant 0 : index |
| 54 | + %c5 = arith.constant 5.0 : f32 |
| 55 | + %0 = tensor.pad %arg0 low[0, 0] high[5, 7] { |
| 56 | + ^bb0(%arg2: index, %arg3: index): |
| 57 | + tensor.yield %c5 : f32 |
| 58 | + } : tensor<5x6xf32> to tensor<10x13xf32> |
| 59 | + %1 = call @make_vector() : () -> vector<7x9xf32> |
| 60 | + %2 = vector.transfer_write %1, %0[%c0, %c0] |
| 61 | + : vector<7x9xf32>, tensor<10x13xf32> |
| 62 | + %3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32> |
| 63 | + return %3 : tensor<5x6xf32> |
| 64 | +} |
| 65 | + |
| 66 | +module attributes {transform.with_named_sequence} { |
| 67 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 68 | + %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func"> |
| 69 | + |
| 70 | + transform.apply_patterns to %func_op { |
| 71 | + transform.apply_patterns.linalg.pad_vectorization |
| 72 | + } : !transform.op<"func.func"> |
| 73 | + transform.yield |
| 74 | + } |
| 75 | +} |
| 76 | + |
| 77 | +// ----- |
| 78 | + |
| 79 | +func.func private @make_vector() -> vector<7x9xf32> |
| 80 | + |
| 81 | +// CHECK-LABEL: func @pad_and_transfer_write_static_low_dynamic_high |
| 82 | +// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?xf32>, %[[SIZE:.*]]: index, %[[PADDING:.*]]: index |
| 83 | +// CHECK-NOT: tensor.pad |
| 84 | +// CHECK: %[[C0:.*]] = arith.constant 0 : index |
| 85 | +// CHECK: %[[SUB:.*]] = tensor.extract_slice %[[ARG0]][0, 0] [%[[SIZE]], 6] [1, 1] : tensor<?x?xf32> to tensor<?x6xf32> |
| 86 | +// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32> |
| 87 | +// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[SUB]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<?x6xf32> |
| 88 | +// CHECK: return %[[RESULT]] |
| 89 | +func.func @pad_and_transfer_write_static_low_dynamic_high( |
| 90 | + %arg0: tensor<?x?xf32>, %size: index, %padding: index) -> tensor<?x6xf32> { |
| 91 | + %c0 = arith.constant 0 : index |
| 92 | + %c5 = arith.constant 5.0 : f32 |
| 93 | + %s = tensor.extract_slice %arg0[0, 0] [%size, 6] [1, 1] |
| 94 | + : tensor<?x?xf32> to tensor<?x6xf32> |
| 95 | + %0 = tensor.pad %s low[0, 0] high[%padding, 7] { |
| 96 | + ^bb0(%arg2: index, %arg3: index): |
| 97 | + tensor.yield %c5 : f32 |
| 98 | + } : tensor<?x6xf32> to tensor<?x13xf32> |
| 99 | + %1 = call @make_vector() : () -> vector<7x9xf32> |
| 100 | + %2 = vector.transfer_write %1, %0[%c0, %c0] |
| 101 | + : vector<7x9xf32>, tensor<?x13xf32> |
| 102 | + %3 = tensor.extract_slice %2[0, 0] [%size, 6] [1, 1] : tensor<?x13xf32> to tensor<?x6xf32> |
| 103 | + return %3 : tensor<?x6xf32> |
| 104 | +} |
| 105 | + |
| 106 | +module attributes {transform.with_named_sequence} { |
| 107 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 108 | + %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func"> |
| 109 | + |
| 110 | + transform.apply_patterns to %func_op { |
| 111 | + transform.apply_patterns.linalg.pad_vectorization |
| 112 | + } : !transform.op<"func.func"> |
| 113 | + transform.yield |
| 114 | + } |
| 115 | +} |
| 116 | + |
| 117 | + |
| 118 | +// ----- |
| 119 | + |
| 120 | +///---------------------------------------------------------------------------------------- |
| 121 | +/// [Pattern: PadOpVectorizationWithInsertSlicePattern] |
| 122 | +///---------------------------------------------------------------------------------------- |
| 123 | + |
| 124 | +func.func private @make_vector() -> tensor<12x13xf32> |
| 125 | + |
| 126 | +// CHECK-LABEL: func @pad_and_insert_slice_source |
| 127 | +// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32> |
| 128 | +// CHECK-NOT: tensor.pad |
| 129 | +// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index |
| 130 | +// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0 |
| 131 | +// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> tensor<12x13xf32> |
| 132 | +// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32> |
| 133 | +// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[VEC0]][%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<7x9xf32>, tensor<12x13xf32> |
| 134 | +// CHECK: return %[[WRITE]] |
| 135 | +func.func @pad_and_insert_slice_source( |
| 136 | + %arg0: tensor<5x6xf32>) -> tensor<12x13xf32> { |
| 137 | + %c0 = arith.constant 0 : index |
| 138 | + %c5 = arith.constant 5.0 : f32 |
| 139 | + %0 = tensor.pad %arg0 low[0, 0] high[2, 3] { |
| 140 | + ^bb0(%arg2: index, %arg3: index): |
| 141 | + tensor.yield %c5 : f32 |
| 142 | + } : tensor<5x6xf32> to tensor<7x9xf32> |
| 143 | + %1 = call @make_vector() : () -> tensor<12x13xf32> |
| 144 | + %r = tensor.insert_slice %0 into %1[0, 0][7, 9][1, 1] : tensor<7x9xf32> into tensor<12x13xf32> |
| 145 | + return %r : tensor<12x13xf32> |
| 146 | +} |
| 147 | + |
| 148 | +module attributes {transform.with_named_sequence} { |
| 149 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 150 | + %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func"> |
| 151 | + |
| 152 | + transform.apply_patterns to %func_op { |
| 153 | + transform.apply_patterns.linalg.pad_vectorization |
| 154 | + } : !transform.op<"func.func"> |
| 155 | + transform.yield |
| 156 | + } |
| 157 | +} |
| 158 | + |
| 159 | + |
| 160 | +// ----- |
| 161 | + |
| 162 | +///---------------------------------------------------------------------------------------- |
| 163 | +/// tensor::PadOp -> tensor::EmptyOp + linalg::FillOp/tensor::GenerateOp + tensor::InsertSliceOp |
| 164 | +/// [Pattern: GenericPadOpVectorizationPattern] |
| 165 | +///---------------------------------------------------------------------------------------- |
| 166 | + |
| 167 | +func.func private @make_vector() -> tensor<12x13xf32> |
| 168 | + |
| 169 | +// Same as @pad_and_insert_slice_dest in vectorization-with-patterns.mlir, but |
| 170 | +// over here linalg::fill is not vectorized (patterns for linalg.fill are not |
| 171 | +// included here) |
| 172 | +// CHECK-LABEL: func.func @pad_and_insert_slice_dest( |
| 173 | +// CHECK-SAME: %[[ARG_0:.*]]: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> { |
| 174 | +// CHECK-NOT: tensor.pad |
| 175 | +// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index |
| 176 | +// CHECK-DAG: %[[PAD:.*]] = arith.constant 5.000000e+00 : f32 |
| 177 | +// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x12x13xf32> |
| 178 | +// CHECK: %[[FILL:.*]] = linalg.fill ins(%[[PAD]] : f32) outs(%[[EMPTY]] : tensor<1x12x13xf32>) -> tensor<1x12x13xf32> |
| 179 | +// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG_0]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x5x6xf32>, vector<1x5x6xf32> |
| 180 | +// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[FILL]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x5x6xf32>, tensor<1x12x13xf32> |
| 181 | +// CHECK: %[[VEC:.*]] = call @make_vector() : () -> tensor<12x13xf32> |
| 182 | +// CHECK: %[[RES:.*]] = tensor.insert_slice %[[VEC]] into %[[WRITE]][0, 0, 0] [1, 12, 13] [1, 1, 1] : tensor<12x13xf32> into tensor<1x12x13xf32> |
| 183 | +// CHECK: return %[[RES]] : tensor<1x12x13xf32> |
| 184 | + |
| 185 | +func.func @pad_and_insert_slice_dest( |
| 186 | + %arg0: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> { |
| 187 | + %c5 = arith.constant 5.0 : f32 |
| 188 | + %0 = tensor.pad %arg0 low[0, 0, 0] high[0, 7, 7] { |
| 189 | + ^bb0(%arg2: index, %arg3: index, %arg4: index): |
| 190 | + tensor.yield %c5 : f32 |
| 191 | + } : tensor<1x5x6xf32> to tensor<1x12x13xf32> |
| 192 | + %1 = call @make_vector() : () -> tensor<12x13xf32> |
| 193 | + %r = tensor.insert_slice %1 into %0[0, 0, 0][1, 12, 13][1, 1, 1] : tensor<12x13xf32> into tensor<1x12x13xf32> |
| 194 | + return %r : tensor<1x12x13xf32> |
| 195 | +} |
| 196 | + |
| 197 | +module attributes {transform.with_named_sequence} { |
| 198 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 199 | + %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func"> |
| 200 | + |
| 201 | + transform.apply_patterns to %func_op { |
| 202 | + transform.apply_patterns.linalg.pad_vectorization |
| 203 | + } : !transform.op<"func.func"> |
| 204 | + transform.yield |
| 205 | + } |
| 206 | +} |
| 207 | + |
| 208 | +// ----- |
| 209 | +func.func private @make_vector() -> vector<7x9xf32> |
| 210 | + |
| 211 | +// Variant of @pad_and_transfer_write_static |
| 212 | + |
| 213 | +// CHECK-LABEL: func @pad_and_transfer_write_static_non_zero_low_pad |
| 214 | +// CHECK-NOT: tensor.pad |
| 215 | +// CHECK: linalg.fill |
| 216 | +func.func @pad_and_transfer_write_static_non_zero_low_pad( |
| 217 | + %arg0: tensor<5x6xf32>) -> tensor<5x6xf32> { |
| 218 | + %c0 = arith.constant 0 : index |
| 219 | + %c5 = arith.constant 5.0 : f32 |
| 220 | + %0 = tensor.pad %arg0 low[0, 1] high[5, 6] { |
| 221 | + ^bb0(%arg2: index, %arg3: index): |
| 222 | + tensor.yield %c5 : f32 |
| 223 | + } : tensor<5x6xf32> to tensor<10x13xf32> |
| 224 | + %1 = call @make_vector() : () -> vector<7x9xf32> |
| 225 | + %2 = vector.transfer_write %1, %0[%c0, %c0] |
| 226 | + : vector<7x9xf32>, tensor<10x13xf32> |
| 227 | + %3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32> |
| 228 | + return %3 : tensor<5x6xf32> |
| 229 | +} |
| 230 | + |
| 231 | +module attributes {transform.with_named_sequence} { |
| 232 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 233 | + %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func"> |
| 234 | + |
| 235 | + transform.apply_patterns to %func_op { |
| 236 | + transform.apply_patterns.linalg.pad_vectorization |
| 237 | + } : !transform.op<"func.func"> |
| 238 | + transform.yield |
| 239 | + } |
| 240 | +} |
| 241 | + |
| 242 | +// ----- |
| 243 | +func.func private @make_vector() -> vector<7x9xf32> |
| 244 | + |
| 245 | +// Variant of @pad_and_transfer_write_static |
| 246 | + |
| 247 | +// CHECK-LABEL: func @pad_and_transfer_write_static_non_zero_offset |
| 248 | +// CHECK-NOT: tensor.pad |
| 249 | +// CHECK: linalg.fill |
| 250 | +func.func @pad_and_transfer_write_static_non_zero_offset( |
| 251 | + %arg0: tensor<5x6xf32>) -> tensor<5x6xf32> { |
| 252 | + %c0 = arith.constant 0 : index |
| 253 | + %c5 = arith.constant 5.0 : f32 |
| 254 | + %0 = tensor.pad %arg0 low[0, 1] high[5, 6] { |
| 255 | + ^bb0(%arg2: index, %arg3: index): |
| 256 | + tensor.yield %c5 : f32 |
| 257 | + } : tensor<5x6xf32> to tensor<10x13xf32> |
| 258 | + %1 = call @make_vector() : () -> vector<7x9xf32> |
| 259 | + %2 = vector.transfer_write %1, %0[%c0, %c0] |
| 260 | + : vector<7x9xf32>, tensor<10x13xf32> |
| 261 | + %3 = tensor.extract_slice %2[0, 1] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32> |
| 262 | + return %3 : tensor<5x6xf32> |
| 263 | +} |
| 264 | + |
| 265 | +module attributes {transform.with_named_sequence} { |
| 266 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 267 | + %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func"> |
| 268 | + |
| 269 | + transform.apply_patterns to %func_op { |
| 270 | + transform.apply_patterns.linalg.pad_vectorization |
| 271 | + } : !transform.op<"func.func"> |
| 272 | + transform.yield |
| 273 | + } |
| 274 | +} |
0 commit comments