|
| 1 | +""" |
| 2 | +==================== |
| 3 | +Dynamic Downsampling |
| 4 | +==================== |
| 5 | +
|
| 6 | +Generates a large image with three levels of detail. |
| 7 | +
|
| 8 | +When zoomed out, appears as a difference of 2D Gaussians. |
| 9 | +At medium zoom, a diagonal sinusoidal pattern is apparent. |
| 10 | +When zoomed in close, noise is visible. |
| 11 | +
|
| 12 | +The image is dynamically subsampled using a local mean which hides the finer details. |
| 13 | +""" |
| 14 | + |
| 15 | +from typing import Tuple, Dict, Any, Union |
| 16 | + |
| 17 | +import matplotlib as mpl |
| 18 | +import matplotlib.pyplot as plt |
| 19 | +from matplotlib.colors import Normalize |
| 20 | + |
| 21 | +import numpy as np |
| 22 | + |
| 23 | +from data_prototype.wrappers import ImageWrapper |
| 24 | +from data_prototype.containers import _Transform |
| 25 | + |
| 26 | +from skimage.transform import downscale_local_mean |
| 27 | + |
| 28 | + |
| 29 | +x = y = np.linspace(-3, 3, 3000) |
| 30 | +X, Y = np.meshgrid(x, y) |
| 31 | +Z1 = np.exp(-(X**2) - Y**2) + 0.08 * np.sin(50 * (X + Y)) |
| 32 | +Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2) |
| 33 | +Z = (Z1 - Z2) * 2 |
| 34 | + |
| 35 | +Z += np.random.random(Z.shape) - 0.5 |
| 36 | + |
| 37 | + |
| 38 | +class Subsample: |
| 39 | + def describe(self): |
| 40 | + return { |
| 41 | + "xextent": Desc([2], float), |
| 42 | + "yextent": Desc([2], float), |
| 43 | + "image": Desc([], float), |
| 44 | + } |
| 45 | + |
| 46 | + def query( |
| 47 | + self, |
| 48 | + transform: _Transform, |
| 49 | + size: Tuple[int, int], |
| 50 | + ) -> Tuple[Dict[str, Any], Union[str, int]]: |
| 51 | + (x1, y1), (x2, y2) = transform.transform([[0, 0], [1, 1]]) |
| 52 | + |
| 53 | + xi1 = np.argmin(np.abs(x - x1)) |
| 54 | + yi1 = np.argmin(np.abs(y - y1)) |
| 55 | + xi2 = np.argmin(np.abs(x - x2)) |
| 56 | + yi2 = np.argmin(np.abs(y - y2)) |
| 57 | + |
| 58 | + xscale = int(np.ceil((xi2 - xi1) / 50)) |
| 59 | + yscale = int(np.ceil((yi2 - yi1) / 50)) |
| 60 | + |
| 61 | + return { |
| 62 | + "xextent": [x1, x2], |
| 63 | + "yextent": [y1, y2], |
| 64 | + "image": downscale_local_mean(Z[xi1:xi2, yi1:yi2], (xscale, yscale)), |
| 65 | + }, hash((x1, x2, y1, y2)) |
| 66 | + |
| 67 | + |
| 68 | +sub = Subsample() |
| 69 | +cmap = mpl.colormaps["coolwarm"] |
| 70 | +norm = Normalize(-2.2, 2.2) |
| 71 | +im = ImageWrapper(sub, {"image": lambda image: cmap(norm(image))}) |
| 72 | + |
| 73 | +fig, ax = plt.subplots() |
| 74 | +ax.add_artist(im) |
| 75 | +ax.set_xlim(-3, 3) |
| 76 | +ax.set_ylim(-3, 3) |
| 77 | +plt.show() |
0 commit comments