-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathmain.py
431 lines (352 loc) · 14.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import asyncio
import json
import logging
import os
import shutil
from contextlib import AsyncExitStack
from typing import Any
import httpx
from dotenv import load_dotenv
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
class Configuration:
"""Manages configuration and environment variables for the MCP client."""
def __init__(self) -> None:
"""Initialize configuration with environment variables."""
self.load_env()
self.api_key = os.getenv("LLM_API_KEY")
@staticmethod
def load_env() -> None:
"""Load environment variables from .env file."""
load_dotenv()
@staticmethod
def load_config(file_path: str) -> dict[str, Any]:
"""Load server configuration from JSON file.
Args:
file_path: Path to the JSON configuration file.
Returns:
Dict containing server configuration.
Raises:
FileNotFoundError: If configuration file doesn't exist.
JSONDecodeError: If configuration file is invalid JSON.
"""
with open(file_path, "r") as f:
return json.load(f)
@property
def llm_api_key(self) -> str:
"""Get the LLM API key.
Returns:
The API key as a string.
Raises:
ValueError: If the API key is not found in environment variables.
"""
if not self.api_key:
raise ValueError("LLM_API_KEY not found in environment variables")
return self.api_key
class Server:
"""Manages MCP server connections and tool execution."""
def __init__(self, name: str, config: dict[str, Any]) -> None:
self.name: str = name
self.config: dict[str, Any] = config
self.stdio_context: Any | None = None
self.session: ClientSession | None = None
self._cleanup_lock: asyncio.Lock = asyncio.Lock()
self.exit_stack: AsyncExitStack = AsyncExitStack()
async def initialize(self) -> None:
"""Initialize the server connection."""
command = (
shutil.which("npx")
if self.config["command"] == "npx"
else self.config["command"]
)
if command is None:
raise ValueError("The command must be a valid string and cannot be None.")
server_params = StdioServerParameters(
command=command,
args=self.config["args"],
env={**os.environ, **self.config["env"]}
if self.config.get("env")
else None,
)
try:
stdio_transport = await self.exit_stack.enter_async_context(
stdio_client(server_params)
)
read, write = stdio_transport
session = await self.exit_stack.enter_async_context(
ClientSession(read, write)
)
await session.initialize()
self.session = session
except Exception as e:
logging.error(f"Error initializing server {self.name}: {e}")
await self.cleanup()
raise
async def list_tools(self) -> list[Any]:
"""List available tools from the server.
Returns:
A list of available tools.
Raises:
RuntimeError: If the server is not initialized.
"""
if not self.session:
raise RuntimeError(f"Server {self.name} not initialized")
tools_response = await self.session.list_tools()
tools = []
for item in tools_response:
if isinstance(item, tuple) and item[0] == "tools":
tools.extend(
Tool(tool.name, tool.description, tool.inputSchema)
for tool in item[1]
)
return tools
async def execute_tool(
self,
tool_name: str,
arguments: dict[str, Any],
retries: int = 2,
delay: float = 1.0,
) -> Any:
"""Execute a tool with retry mechanism.
Args:
tool_name: Name of the tool to execute.
arguments: Tool arguments.
retries: Number of retry attempts.
delay: Delay between retries in seconds.
Returns:
Tool execution result.
Raises:
RuntimeError: If server is not initialized.
Exception: If tool execution fails after all retries.
"""
if not self.session:
raise RuntimeError(f"Server {self.name} not initialized")
attempt = 0
while attempt < retries:
try:
logging.info(f"Executing {tool_name}...")
result = await self.session.call_tool(tool_name, arguments)
return result
except Exception as e:
attempt += 1
logging.warning(
f"Error executing tool: {e}. Attempt {attempt} of {retries}."
)
if attempt < retries:
logging.info(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
else:
logging.error("Max retries reached. Failing.")
raise
async def cleanup(self) -> None:
"""Clean up server resources."""
async with self._cleanup_lock:
try:
await self.exit_stack.aclose()
self.session = None
self.stdio_context = None
except Exception as e:
logging.error(f"Error during cleanup of server {self.name}: {e}")
class Tool:
"""Represents a tool with its properties and formatting."""
def __init__(
self, name: str, description: str, input_schema: dict[str, Any]
) -> None:
self.name: str = name
self.description: str = description
self.input_schema: dict[str, Any] = input_schema
def format_for_llm(self) -> str:
"""Format tool information for LLM.
Returns:
A formatted string describing the tool.
"""
args_desc = []
if "properties" in self.input_schema:
for param_name, param_info in self.input_schema["properties"].items():
arg_desc = (
f"- {param_name}: {param_info.get('description', 'No description')}"
)
if param_name in self.input_schema.get("required", []):
arg_desc += " (required)"
args_desc.append(arg_desc)
return f"""
Tool: {self.name}
Description: {self.description}
Arguments:
{chr(10).join(args_desc)}
"""
class LLMClient:
"""Manages communication with the LLM provider."""
def __init__(self, api_key: str) -> None:
self.api_key: str = api_key
def get_response(self, messages: list[dict[str, str]]) -> str:
"""Get a response from the LLM.
Args:
messages: A list of message dictionaries.
Returns:
The LLM's response as a string.
Raises:
httpx.RequestError: If the request to the LLM fails.
"""
url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
payload = {
"messages": messages,
"model": "llama-3.2-90b-vision-preview",
"temperature": 0.7,
"max_tokens": 4096,
"top_p": 1,
"stream": False,
"stop": None,
}
try:
with httpx.Client() as client:
response = client.post(url, headers=headers, json=payload)
response.raise_for_status()
data = response.json()
return data["choices"][0]["message"]["content"]
except httpx.RequestError as e:
error_message = f"Error getting LLM response: {str(e)}"
logging.error(error_message)
if isinstance(e, httpx.HTTPStatusError):
status_code = e.response.status_code
logging.error(f"Status code: {status_code}")
logging.error(f"Response details: {e.response.text}")
return (
f"I encountered an error: {error_message}. "
"Please try again or rephrase your request."
)
class ChatSession:
"""Orchestrates the interaction between user, LLM, and tools."""
def __init__(self, servers: list[Server], llm_client: LLMClient) -> None:
self.servers: list[Server] = servers
self.llm_client: LLMClient = llm_client
async def cleanup_servers(self) -> None:
"""Clean up all servers properly."""
cleanup_tasks = [
asyncio.create_task(server.cleanup()) for server in self.servers
]
if cleanup_tasks:
try:
await asyncio.gather(*cleanup_tasks, return_exceptions=True)
except Exception as e:
logging.warning(f"Warning during final cleanup: {e}")
async def process_llm_response(self, llm_response: str) -> str:
"""Process the LLM response and execute tools if needed.
Args:
llm_response: The response from the LLM.
Returns:
The result of tool execution or the original response.
"""
import json
try:
tool_call = json.loads(llm_response)
if "tool" in tool_call and "arguments" in tool_call:
logging.info(f"Executing tool: {tool_call['tool']}")
logging.info(f"With arguments: {tool_call['arguments']}")
for server in self.servers:
tools = await server.list_tools()
if any(tool.name == tool_call["tool"] for tool in tools):
try:
result = await server.execute_tool(
tool_call["tool"], tool_call["arguments"]
)
if isinstance(result, dict) and "progress" in result:
progress = result["progress"]
total = result["total"]
percentage = (progress / total) * 100
logging.info(
f"Progress: {progress}/{total} "
f"({percentage:.1f}%)"
)
return f"Tool execution result: {result}"
except Exception as e:
error_msg = f"Error executing tool: {str(e)}"
logging.error(error_msg)
return error_msg
return f"No server found with tool: {tool_call['tool']}"
return llm_response
except json.JSONDecodeError:
return llm_response
async def start(self) -> None:
"""Main chat session handler."""
try:
for server in self.servers:
try:
await server.initialize()
except Exception as e:
logging.error(f"Failed to initialize server: {e}")
await self.cleanup_servers()
return
all_tools = []
for server in self.servers:
tools = await server.list_tools()
all_tools.extend(tools)
tools_description = "\n".join([tool.format_for_llm() for tool in all_tools])
system_message = (
"You are a helpful assistant with access to these tools:\n\n"
f"{tools_description}\n"
"Choose the appropriate tool based on the user's question. "
"If no tool is needed, reply directly.\n\n"
"IMPORTANT: When you need to use a tool, you must ONLY respond with "
"the exact JSON object format below, nothing else:\n"
"{\n"
' "tool": "tool-name",\n'
' "arguments": {\n'
' "argument-name": "value"\n'
" }\n"
"}\n\n"
"After receiving a tool's response:\n"
"1. Transform the raw data into a natural, conversational response\n"
"2. Keep responses concise but informative\n"
"3. Focus on the most relevant information\n"
"4. Use appropriate context from the user's question\n"
"5. Avoid simply repeating the raw data\n\n"
"Please use only the tools that are explicitly defined above."
)
messages = [{"role": "system", "content": system_message}]
while True:
try:
user_input = input("You: ").strip().lower()
if user_input in ["quit", "exit"]:
logging.info("\nExiting...")
break
messages.append({"role": "user", "content": user_input})
llm_response = self.llm_client.get_response(messages)
logging.info("\nAssistant: %s", llm_response)
result = await self.process_llm_response(llm_response)
if result != llm_response:
messages.append({"role": "assistant", "content": llm_response})
messages.append({"role": "system", "content": result})
final_response = self.llm_client.get_response(messages)
logging.info("\nFinal response: %s", final_response)
messages.append(
{"role": "assistant", "content": final_response}
)
else:
messages.append({"role": "assistant", "content": llm_response})
except KeyboardInterrupt:
logging.info("\nExiting...")
break
finally:
await self.cleanup_servers()
async def main() -> None:
"""Initialize and run the chat session."""
config = Configuration()
server_config = config.load_config("servers_config.json")
servers = [
Server(name, srv_config)
for name, srv_config in server_config["mcpServers"].items()
]
llm_client = LLMClient(config.llm_api_key)
chat_session = ChatSession(servers, llm_client)
await chat_session.start()
if __name__ == "__main__":
asyncio.run(main())