This section is a overview of initiating the detectron2 training and evaluation on oriented rotated datasets challenges. The primary usecase tested in the project is the DOTA-v2 dataset challenge. Refer to the README.md to prereq and review the DATASET_Details.md for data preparation and annotation format details.
to train run: TODO
Makesure these model configs are correct:
DATA_LOADER.NUM_WORKERS 0
NUM_GPUS 2
TRAIN.BATCH_SIZE 16
Resume training from checkpoint
For training that has already started and wanting to retrain an existing model run: TODO
Tensorboard
cd $PATH_MODEL_LOG/outputs
tensorboard --logdir=.
To test the model inference run the following or run sh scripts/test_train.sh
INPUT_DIR=
OUTPUT_DIR=
CONF=
USE_GPU=
CKPT_PATH=
NUM_IMAGES=20
python test_tron.py --input_dir ${INPUT_DIR} --output_dir ${OUTPUT_DIR} --conf ${CONF} \
--use_gpu ${USE_GPU} --ckpt_path ${CKPT_PATH} --num_images ${NUM_IMAGES}
To test the model inference run the following or run sh scripts/test_train.sh
INPUT_DIR=
OUTPUT_DIR=
CONF=
USE_GPU=True
CKPT_PATH=
NUM_IMAGES=20
python test_tron.py --input_dir ${INPUT_DIR} --output_dir ${OUTPUT_DIR} --conf ${CONF} \
--use_gpu ${USE_GPU} --ckpt_path ${CKPT_PATH} --num_images ${NUM_IMAGES}