|
| 1 | +#!/usr/bin/env python |
| 2 | +# encoding: utf-8 |
| 3 | + |
| 4 | +''' |
| 5 | +============================================================== |
| 6 | + Copyright © 2023 Intel Corporation |
| 7 | +
|
| 8 | + SPDX-License-Identifier: MIT |
| 9 | +============================================================== |
| 10 | +''' |
| 11 | + |
| 12 | +import os |
| 13 | +from time import time |
| 14 | +import matplotlib.pyplot as plt |
| 15 | +import torch |
| 16 | +import intel_extension_for_pytorch as ipex |
| 17 | +from intel_extension_for_pytorch.quantization import prepare, convert |
| 18 | +import torchvision |
| 19 | +from torchvision import models |
| 20 | +from transformers import BertModel |
| 21 | + |
| 22 | +NUM_SAMPLES = 1000 # number of samples to perform inference on |
| 23 | +SUPPORTED_MODELS = ["resnet50", "bert"] # models supported by this code sample |
| 24 | + |
| 25 | +# BERT sample data parameters |
| 26 | +BERT_BATCH_SIZE = 1 |
| 27 | +BERT_SEQ_LENGTH = 512 |
| 28 | + |
| 29 | +""" |
| 30 | +Function to perform inference on Resnet50 and BERT |
| 31 | +""" |
| 32 | +def runInference(model, data, modelName="resnet50", dataType="FP32", amx=True): |
| 33 | + """ |
| 34 | + Input parameters |
| 35 | + model: the PyTorch model object used for inference |
| 36 | + data: a sample input into the model |
| 37 | + modelName: str representing the name of the model, supported values - resnet50, bert |
| 38 | + dataType: str representing the data type for model parameters, supported values - FP32, BF16, INT8 |
| 39 | + amx: set to False to disable AMX on BF16, Default: True |
| 40 | + Return value |
| 41 | + inference_time: the time in seconds it takes to perform inference with the model |
| 42 | + """ |
| 43 | + |
| 44 | + # Display run case |
| 45 | + if amx: |
| 46 | + isa_text = "AVX512_CORE_AMX" |
| 47 | + else: |
| 48 | + isa_text = "AVX512_CORE_VNNI" |
| 49 | + print("%s %s inference with %s" %(modelName, dataType, isa_text)) |
| 50 | + |
| 51 | + # Configure environment variable |
| 52 | + if not amx: |
| 53 | + os.environ["ONEDNN_MAX_CPU_ISA"] = "AVX512_CORE_VNNI" |
| 54 | + else: |
| 55 | + os.environ["ONEDNN_MAX_CPU_ISA"] = "DEFAULT" |
| 56 | + |
| 57 | + # Special variables for specific models |
| 58 | + if "bert" == modelName: |
| 59 | + d = torch.randint(model.config.vocab_size, size=[BERT_BATCH_SIZE, BERT_SEQ_LENGTH]) # sample data input for torchscript and inference |
| 60 | + |
| 61 | + # Prepare model for inference based on precision (FP32, BF16, INT8) |
| 62 | + if "INT8" == dataType: |
| 63 | + # Quantize model to INT8 if needed (one time) |
| 64 | + model_filename = "quantized_model_%s.pt" %modelName |
| 65 | + if not os.path.exists(model_filename): |
| 66 | + qconfig = ipex.quantization.default_static_qconfig |
| 67 | + prepared_model = prepare(model, qconfig, example_inputs=data, inplace=False) |
| 68 | + converted_model = convert(prepared_model) |
| 69 | + with torch.no_grad(): |
| 70 | + if "resnet50" == modelName: |
| 71 | + traced_model = torch.jit.trace(converted_model, data) |
| 72 | + elif "bert" == modelName: |
| 73 | + traced_model = torch.jit.trace(converted_model, (d,), check_trace=False, strict=False) |
| 74 | + else: |
| 75 | + raise Exception("ERROR: modelName %s is not supported. Choose from %s" %(modelName, SUPPORTED_MODELS)) |
| 76 | + traced_model.save(model_filename) |
| 77 | + |
| 78 | + # Load INT8 model for inference |
| 79 | + model = torch.jit.load(model_filename) |
| 80 | + model.eval() |
| 81 | + model = torch.jit.freeze(model) |
| 82 | + elif "BF16" == dataType: |
| 83 | + model = ipex.optimize(model, dtype=torch.bfloat16) |
| 84 | + with torch.no_grad(): |
| 85 | + with torch.cpu.amp.autocast(): |
| 86 | + if "resnet50" == modelName: |
| 87 | + model = torch.jit.trace(model, data) |
| 88 | + elif "bert" == modelName: |
| 89 | + model = torch.jit.trace(model, (d,), check_trace=False, strict=False) |
| 90 | + else: |
| 91 | + raise Exception("ERROR: modelName %s is not supported. Choose from %s" %(modelName, SUPPORTED_MODELS)) |
| 92 | + model = torch.jit.freeze(model) |
| 93 | + else: # FP32 |
| 94 | + with torch.no_grad(): |
| 95 | + if "resnet50" == modelName: |
| 96 | + model = torch.jit.trace(model, data) |
| 97 | + elif "bert" == modelName: |
| 98 | + model = torch.jit.trace(model, (d,), check_trace=False, strict=False) |
| 99 | + else: |
| 100 | + raise Exception("ERROR: modelName %s is not supported. Choose from %s" %(modelName, SUPPORTED_MODELS)) |
| 101 | + model = torch.jit.freeze(model) |
| 102 | + |
| 103 | + # Run inference |
| 104 | + with torch.no_grad(): |
| 105 | + if "BF16" == dataType: |
| 106 | + with torch.cpu.amp.autocast(): |
| 107 | + # Warm up |
| 108 | + for i in range(20): |
| 109 | + model(data) |
| 110 | + |
| 111 | + # Measure latency |
| 112 | + start_time = time() |
| 113 | + for i in range(NUM_SAMPLES): |
| 114 | + model(data) |
| 115 | + end_time = time() |
| 116 | + else: |
| 117 | + # Warm up |
| 118 | + for i in range(20): |
| 119 | + model(data) |
| 120 | + |
| 121 | + # Measure latency |
| 122 | + start_time = time() |
| 123 | + for i in range(NUM_SAMPLES): |
| 124 | + model(data) |
| 125 | + end_time = time() |
| 126 | + inference_time = end_time - start_time |
| 127 | + print("Inference on %d samples took %.3f seconds" %(NUM_SAMPLES, inference_time)) |
| 128 | + |
| 129 | + return inference_time |
| 130 | + |
| 131 | +""" |
| 132 | +Prints out results and displays figures summarizing output. |
| 133 | +""" |
| 134 | +def summarizeResults(modelName="", results=None): |
| 135 | + """ |
| 136 | + Input parameters |
| 137 | + modelName: a str representing the name of the model |
| 138 | + results: a dict with the run case and its corresponding time in seconds |
| 139 | + Return value |
| 140 | + None |
| 141 | + """ |
| 142 | + |
| 143 | + # Inference time results |
| 144 | + print("\nSummary for %s (%d samples)" %(modelName, NUM_SAMPLES)) |
| 145 | + for key in results.keys(): |
| 146 | + print("%s inference time: %.3f seconds" %(key, results[key])) |
| 147 | + |
| 148 | + # Create bar chart with inference time results |
| 149 | + plt.figure() |
| 150 | + plt.title("%s Inference Time (%d samples)" %(modelName, NUM_SAMPLES)) |
| 151 | + plt.xlabel("Run Case") |
| 152 | + plt.ylabel("Inference Time (seconds)") |
| 153 | + plt.bar(results.keys(), results.values()) |
| 154 | + |
| 155 | + # Calculate speedup when using AMX |
| 156 | + print("\n") |
| 157 | + bf16_with_amx_speedup = results["FP32"] / results["BF16_with_AMX"] |
| 158 | + print("BF16 with AMX is %.2fX faster than FP32" %bf16_with_amx_speedup) |
| 159 | + int8_with_vnni_speedup = results["FP32"] / results["INT8_with_VNNI"] |
| 160 | + print("INT8 with VNNI is %.2fX faster than FP32" %int8_with_vnni_speedup) |
| 161 | + int8_with_amx_speedup = results["FP32"] / results["INT8_with_AMX"] |
| 162 | + print("INT8 with AMX is %.2fX faster than FP32" %int8_with_amx_speedup) |
| 163 | + print("\n\n") |
| 164 | + |
| 165 | + # Create bar chart with speedup results |
| 166 | + plt.figure() |
| 167 | + plt.title("%s AMX BF16/INT8 Speedup over FP32" %modelName) |
| 168 | + plt.xlabel("Run Case") |
| 169 | + plt.ylabel("Speedup") |
| 170 | + plt.bar(results.keys(), |
| 171 | + [1, bf16_with_amx_speedup, int8_with_vnni_speedup, int8_with_amx_speedup] |
| 172 | + ) |
| 173 | + |
| 174 | +""" |
| 175 | +Perform all types of inference in main function |
| 176 | +
|
| 177 | +Inference run cases for both Resnet50 and BERT |
| 178 | +1) FP32 (baseline) |
| 179 | +2) BF16 using AVX512_CORE_AMX |
| 180 | +3) INT8 using AVX512_CORE_VNNI |
| 181 | +4) INT8 using AVX512_CORE_AMX |
| 182 | +""" |
| 183 | +def main(): |
| 184 | + # Check if hardware supports AMX |
| 185 | + import sys |
| 186 | + sys.path.append('../../') |
| 187 | + import version_check |
| 188 | + from cpuinfo import get_cpu_info |
| 189 | + info = get_cpu_info() |
| 190 | + flags = info['flags'] |
| 191 | + amx_supported = False |
| 192 | + for flag in flags: |
| 193 | + if "amx" in flag: |
| 194 | + amx_supported = True |
| 195 | + break |
| 196 | + if not amx_supported: |
| 197 | + print("AMX is not supported on current hardware. Code sample cannot be run.\n") |
| 198 | + return |
| 199 | + |
| 200 | + # ResNet50 |
| 201 | + resnet_model = models.resnet50(pretrained=True) |
| 202 | + resnet_data = torch.rand(1, 3, 224, 224) |
| 203 | + resnet_model.eval() |
| 204 | + fp32_resnet_inference_time = runInference(resnet_model, resnet_data, modelName="resnet50", dataType="FP32", amx=True) |
| 205 | + bf16_amx_resnet_inference_time = runInference(resnet_model, resnet_data, modelName="resnet50", dataType="BF16", amx=True) |
| 206 | + int8_with_vnni_resnet_inference_time = runInference(resnet_model, resnet_data, modelName="resnet50", dataType="INT8", amx=False) |
| 207 | + int8_amx_resnet_inference_time = runInference(resnet_model, resnet_data, modelName="resnet50", dataType="INT8", amx=True) |
| 208 | + results_resnet = { |
| 209 | + "FP32": fp32_resnet_inference_time, |
| 210 | + "BF16_with_AMX": bf16_amx_resnet_inference_time, |
| 211 | + "INT8_with_VNNI": int8_with_vnni_resnet_inference_time, |
| 212 | + "INT8_with_AMX": int8_amx_resnet_inference_time |
| 213 | + } |
| 214 | + summarizeResults("ResNet50", results_resnet) |
| 215 | + |
| 216 | + # BERT |
| 217 | + bert_model = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-uncased') |
| 218 | + bert_data = torch.randint(bert_model.config.vocab_size, size=[BERT_BATCH_SIZE, BERT_SEQ_LENGTH]) |
| 219 | + bert_model.eval() |
| 220 | + fp32_bert_inference_time = runInference(bert_model, bert_data, modelName="bert", dataType="FP32", amx=True) |
| 221 | + bf16_amx_bert_inference_time = runInference(bert_model, bert_data, modelName="bert", dataType="BF16", amx=True) |
| 222 | + int8_with_vnni_bert_inference_time = runInference(bert_model, bert_data, modelName="bert", dataType="INT8", amx=False) |
| 223 | + int8_amx_bert_inference_time = runInference(bert_model, bert_data, modelName="bert", dataType="INT8", amx=True) |
| 224 | + results_bert = { |
| 225 | + "FP32": fp32_bert_inference_time, |
| 226 | + "BF16_with_AMX": bf16_amx_bert_inference_time, |
| 227 | + "INT8_with_VNNI": int8_with_vnni_bert_inference_time, |
| 228 | + "INT8_with_AMX": int8_amx_bert_inference_time |
| 229 | + } |
| 230 | + summarizeResults("BERT", results_bert) |
| 231 | + |
| 232 | + # Display graphs |
| 233 | + plt.show() |
| 234 | + |
| 235 | +if __name__ == '__main__': |
| 236 | + main() |
| 237 | + print('[CODE_SAMPLE_COMPLETED_SUCCESFULLY]') |
0 commit comments