@@ -58,10 +58,10 @@ def test_categorical_dtype(data):
58
58
assert col .describe_categorical == {
59
59
"is_ordered" : data [1 ],
60
60
"is_dictionary" : True ,
61
- "mapping" : {4 : "s " , 2 : "d" , 3 : "e" , 1 : "t" },
61
+ "mapping" : {0 : "a " , 1 : "d" , 2 : "e" , 3 : "s" , 4 : "t" },
62
62
}
63
63
64
- assert assert_frame_equal (df , from_dataframe (df .__dataframe__ ()))
64
+ assert_frame_equal (df , from_dataframe (df .__dataframe__ ()))
65
65
66
66
67
67
@pytest .mark .parametrize ("data" , [int_data , float_data , bool_data ])
@@ -76,13 +76,12 @@ def test_dataframe(data):
76
76
77
77
assert list (df2 .column_names ()) == list (data .keys ())
78
78
79
- assert assert_frame_equal (
80
- from_dataframe (df2 .select_columns ((0 , 2 ))),
81
- from_dataframe (df2 .select_columns_by_name (("col33" , "col35" ))),
82
- )
83
- assert assert_frame_equal (
84
- from_dataframe (df2 .select_columns ((0 , 2 ))),
85
- from_dataframe (df2 .select_columns_by_name (("col33" , "col35" ))),
79
+ indices = (0 , 2 )
80
+ names = tuple (list (data .keys ())[idx ] for idx in indices )
81
+
82
+ assert_frame_equal (
83
+ from_dataframe (df2 .select_columns (indices )),
84
+ from_dataframe (df2 .select_columns_by_name (names )),
86
85
)
87
86
88
87
@@ -97,10 +96,6 @@ def test_missing_from_masked():
97
96
98
97
df2 = df .__dataframe__ ()
99
98
100
- # for col_name in df.columns:
101
- # assert convert_column_to_array(df2.get_column_by_name(col_name) == df[col_name].tolist()
102
- # assert df[col_name].dtype == convert_column_to_array(df2.get_column_by_name(col_name)).dtype
103
-
104
99
rng = np .random .RandomState (42 )
105
100
dict_null = {col : rng .randint (low = 0 , high = len (df )) for col in df .columns }
106
101
for col , num_nulls in dict_null .items ():
0 commit comments