@@ -1736,15 +1736,15 @@ def fillna(self, value=None, method=None, limit=None):
1736
1736
raise NotImplementedError ("specifying a limit for fillna has not "
1737
1737
"been implemented yet" )
1738
1738
1739
- values = self ._codes
1739
+ codes = self ._codes
1740
1740
1741
1741
# pad / bfill
1742
1742
if method is not None :
1743
1743
1744
1744
values = self .to_dense ().reshape (- 1 , len (self ))
1745
1745
values = interpolate_2d (values , method , 0 , None ,
1746
1746
value ).astype (self .categories .dtype )[0 ]
1747
- values = _get_codes_for_values (values , self .categories )
1747
+ codes = _get_codes_for_values (values , self .categories )
1748
1748
1749
1749
else :
1750
1750
@@ -1756,27 +1756,27 @@ def fillna(self, value=None, method=None, limit=None):
1756
1756
1757
1757
values_codes = _get_codes_for_values (value , self .categories )
1758
1758
indexer = np .where (values_codes != - 1 )
1759
- values [indexer ] = values_codes [values_codes != - 1 ]
1759
+ codes [indexer ] = values_codes [values_codes != - 1 ]
1760
1760
1761
1761
# If value is not a dict or Series it should be a scalar
1762
1762
elif is_hashable (value ):
1763
1763
if not isna (value ) and value not in self .categories :
1764
1764
raise ValueError ("fill value must be in categories" )
1765
1765
1766
- mask = values == - 1
1766
+ mask = codes == - 1
1767
1767
if mask .any ():
1768
- values = values .copy ()
1768
+ codes = codes .copy ()
1769
1769
if isna (value ):
1770
- values [mask ] = - 1
1770
+ codes [mask ] = - 1
1771
1771
else :
1772
- values [mask ] = self .categories .get_loc (value )
1772
+ codes [mask ] = self .categories .get_loc (value )
1773
1773
1774
1774
else :
1775
1775
raise TypeError ('"value" parameter must be a scalar, dict '
1776
1776
'or Series, but you passed a '
1777
1777
'"{0}"' .format (type (value ).__name__ ))
1778
1778
1779
- return self ._constructor (values , dtype = self .dtype , fastpath = True )
1779
+ return self ._constructor (codes , dtype = self .dtype , fastpath = True )
1780
1780
1781
1781
def take_nd (self , indexer , allow_fill = None , fill_value = None ):
1782
1782
"""
@@ -2148,14 +2148,12 @@ def mode(self, dropna=True):
2148
2148
"""
2149
2149
2150
2150
import pandas ._libs .hashtable as htable
2151
- values = self ._codes
2151
+ codes = self ._codes
2152
2152
if dropna :
2153
2153
good = self ._codes != - 1
2154
- values = self ._codes [good ]
2155
- values = sorted (htable .mode_int64 (ensure_int64 (values ), dropna ))
2156
- result = self ._constructor (values = values , dtype = self .dtype ,
2157
- fastpath = True )
2158
- return result
2154
+ codes = self ._codes [good ]
2155
+ codes = sorted (htable .mode_int64 (ensure_int64 (codes ), dropna ))
2156
+ return self ._constructor (values = codes , dtype = self .dtype , fastpath = True )
2159
2157
2160
2158
def unique (self ):
2161
2159
"""
0 commit comments