@@ -801,8 +801,7 @@ def to_gbq(self, destination_table, project_id=None, chunksize=10000,
801
801
into a default chunk size of 10,000. Failures return the complete error
802
802
response which can be quite long depending on the size of the insert.
803
803
There are several important limitations of the Google streaming API
804
- which are detailed at:
805
- https://developers.google.com/bigquery/streaming-data-into-bigquery.
804
+ which are `here <https://developers.google.com/bigquery/streaming-data-into-bigquery>`_
806
805
807
806
Parameters
808
807
----------
@@ -1488,8 +1487,8 @@ def to_latex(self, buf=None, columns=None, col_space=None, colSpace=None,
1488
1487
bold_rows : boolean, default True
1489
1488
Make the row labels bold in the output
1490
1489
column_format : str, default None
1491
- The columns format as specified in LaTeX (e.g 'rcl' for a 3 columns
1492
- table), see https://en.wikibooks.org/wiki/LaTeX/Tables
1490
+ The columns format as specified in ` LaTeX table format
1491
+ < https://en.wikibooks.org/wiki/LaTeX/Tables>`_ e.g 'rcl' for 3 columns
1493
1492
longtable : boolean, default False
1494
1493
Use a longtable environment instead of tabular. Requires adding
1495
1494
a \\ usepackage{longtable} to your LaTeX preamble.
@@ -2114,7 +2113,7 @@ def select_dtypes(self, include=None, exclude=None):
2114
2113
* To select strings you must use the ``object`` dtype, but note that
2115
2114
this will return *all* object dtype columns
2116
2115
* See the `numpy dtype hierarchy
2117
- <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
2116
+ <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`_
2118
2117
* To select Pandas categorical dtypes, use 'category'
2119
2118
2120
2119
Examples
0 commit comments