Skip to content

Commit f0e3ad2

Browse files
committed
pep
1 parent b2d26eb commit f0e3ad2

File tree

2 files changed

+11
-7
lines changed

2 files changed

+11
-7
lines changed

pandas/tests/indexes/test_category.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -348,7 +348,8 @@ def test_astype(self):
348348
right=[2, 4],
349349
closed='right')
350350

351-
ci = CategoricalIndex(Categorical.from_codes([0, 1, -1], categories=ii, ordered=True))
351+
ci = CategoricalIndex(Categorical.from_codes(
352+
[0, 1, -1], categories=ii, ordered=True))
352353

353354
result = ci.astype('interval')
354355
expected = ii.take([0, 1, -1])

pandas/tests/test_categorical.py

Lines changed: 9 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1608,11 +1608,12 @@ def setUp(self):
16081608
self.factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'])
16091609

16101610
df = DataFrame({'value': np.random.randint(0, 10000, 100)})
1611-
labels = [ "{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500) ]
1611+
labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)]
16121612
cat_labels = Categorical(labels, labels)
16131613

16141614
df = df.sort_values(by=['value'], ascending=True)
1615-
df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels)
1615+
df['value_group'] = pd.cut(df.value, range(0, 10500, 500),
1616+
right=False, labels=cat_labels)
16161617
self.cat = df
16171618

16181619
def test_dtypes(self):
@@ -2019,8 +2020,10 @@ def test_series_functions_no_warnings(self):
20192020

20202021
def test_assignment_to_dataframe(self):
20212022
# assignment
2022-
df = DataFrame({'value': np.array(np.random.randint(0, 10000, 100),dtype='int32')})
2023-
labels = Categorical(["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)])
2023+
df = DataFrame({'value': np.array(
2024+
np.random.randint(0, 10000, 100), dtype='int32')})
2025+
labels = Categorical(["{0} - {1}".format(i, i + 499)
2026+
for i in range(0, 10000, 500)])
20242027

20252028
df = df.sort_values(by=['value'], ascending=True)
20262029
s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels)
@@ -3134,7 +3137,7 @@ def test_slicing(self):
31343137
df = DataFrame({'value': (np.arange(100) + 1).astype('int64')})
31353138
df['D'] = pd.cut(df.value, bins=[0, 25, 50, 75, 100])
31363139

3137-
expected = Series([11, Interval(0, 25)], index=['value','D'], name=10)
3140+
expected = Series([11, Interval(0, 25)], index=['value', 'D'], name=10)
31383141
result = df.iloc[10]
31393142
tm.assert_series_equal(result, expected)
31403143

@@ -3144,7 +3147,7 @@ def test_slicing(self):
31443147
result = df.iloc[10:20]
31453148
tm.assert_frame_equal(result, expected)
31463149

3147-
expected = Series([9, Interval(0, 25)],index=['value', 'D'], name=8)
3150+
expected = Series([9, Interval(0, 25)], index=['value', 'D'], name=8)
31483151
result = df.loc[8]
31493152
tm.assert_series_equal(result, expected)
31503153

0 commit comments

Comments
 (0)