@@ -689,16 +689,16 @@ def test_constructor_pass_nan_nat(self):
689
689
tm .assert_series_equal (Series ([np .nan , np .nan ]), exp )
690
690
tm .assert_series_equal (Series (np .array ([np .nan , np .nan ])), exp )
691
691
692
- exp = Series ([pd . NaT , pd . NaT ])
692
+ exp = Series ([NaT , NaT ])
693
693
assert exp .dtype == "datetime64[ns]"
694
- tm .assert_series_equal (Series ([pd . NaT , pd . NaT ]), exp )
695
- tm .assert_series_equal (Series (np .array ([pd . NaT , pd . NaT ])), exp )
694
+ tm .assert_series_equal (Series ([NaT , NaT ]), exp )
695
+ tm .assert_series_equal (Series (np .array ([NaT , NaT ])), exp )
696
696
697
- tm .assert_series_equal (Series ([pd . NaT , np .nan ]), exp )
698
- tm .assert_series_equal (Series (np .array ([pd . NaT , np .nan ])), exp )
697
+ tm .assert_series_equal (Series ([NaT , np .nan ]), exp )
698
+ tm .assert_series_equal (Series (np .array ([NaT , np .nan ])), exp )
699
699
700
- tm .assert_series_equal (Series ([np .nan , pd . NaT ]), exp )
701
- tm .assert_series_equal (Series (np .array ([np .nan , pd . NaT ])), exp )
700
+ tm .assert_series_equal (Series ([np .nan , NaT ]), exp )
701
+ tm .assert_series_equal (Series (np .array ([np .nan , NaT ])), exp )
702
702
703
703
def test_constructor_cast (self ):
704
704
msg = "could not convert string to float"
@@ -824,7 +824,7 @@ def test_constructor_dtype_datetime64(self):
824
824
tm .assert_series_equal (result , expected )
825
825
826
826
expected = Series (
827
- [pd . NaT , datetime (2013 , 1 , 2 ), datetime (2013 , 1 , 3 )], dtype = "datetime64[ns]"
827
+ [NaT , datetime (2013 , 1 , 2 ), datetime (2013 , 1 , 3 )], dtype = "datetime64[ns]"
828
828
)
829
829
result = Series ([np .nan ] + dates [1 :], dtype = "datetime64[ns]" )
830
830
tm .assert_series_equal (result , expected )
@@ -888,13 +888,13 @@ def test_constructor_dtype_datetime64(self):
888
888
assert series1 .dtype == object
889
889
890
890
# these will correctly infer a datetime
891
- s = Series ([None , pd . NaT , "2013-08-05 15:30:00.000001" ])
891
+ s = Series ([None , NaT , "2013-08-05 15:30:00.000001" ])
892
892
assert s .dtype == "datetime64[ns]"
893
- s = Series ([np .nan , pd . NaT , "2013-08-05 15:30:00.000001" ])
893
+ s = Series ([np .nan , NaT , "2013-08-05 15:30:00.000001" ])
894
894
assert s .dtype == "datetime64[ns]"
895
- s = Series ([pd . NaT , None , "2013-08-05 15:30:00.000001" ])
895
+ s = Series ([NaT , None , "2013-08-05 15:30:00.000001" ])
896
896
assert s .dtype == "datetime64[ns]"
897
- s = Series ([pd . NaT , np .nan , "2013-08-05 15:30:00.000001" ])
897
+ s = Series ([NaT , np .nan , "2013-08-05 15:30:00.000001" ])
898
898
assert s .dtype == "datetime64[ns]"
899
899
900
900
# tz-aware (UTC and other tz's)
@@ -907,15 +907,15 @@ def test_constructor_dtype_datetime64(self):
907
907
assert str (Series (dr ).iloc [0 ].tz ) == "US/Eastern"
908
908
909
909
# non-convertible
910
- s = Series ([1479596223000 , - 1479590 , pd . NaT ])
910
+ s = Series ([1479596223000 , - 1479590 , NaT ])
911
911
assert s .dtype == "object"
912
- assert s [2 ] is pd . NaT
912
+ assert s [2 ] is NaT
913
913
assert "NaT" in str (s )
914
914
915
915
# if we passed a NaT it remains
916
- s = Series ([datetime (2010 , 1 , 1 ), datetime (2 , 1 , 1 ), pd . NaT ])
916
+ s = Series ([datetime (2010 , 1 , 1 ), datetime (2 , 1 , 1 ), NaT ])
917
917
assert s .dtype == "object"
918
- assert s [2 ] is pd . NaT
918
+ assert s [2 ] is NaT
919
919
assert "NaT" in str (s )
920
920
921
921
# if we passed a nan it remains
@@ -941,7 +941,7 @@ def test_constructor_with_datetime_tz(self):
941
941
assert isinstance (result , np .ndarray )
942
942
assert result .dtype == "datetime64[ns]"
943
943
944
- exp = pd . DatetimeIndex (result )
944
+ exp = DatetimeIndex (result )
945
945
exp = exp .tz_localize ("UTC" ).tz_convert (tz = s .dt .tz )
946
946
tm .assert_index_equal (dr , exp )
947
947
@@ -977,7 +977,7 @@ def test_constructor_with_datetime_tz(self):
977
977
t = Series (date_range ("20130101" , periods = 1000 , tz = "US/Eastern" ))
978
978
assert "datetime64[ns, US/Eastern]" in str (t )
979
979
980
- result = pd . DatetimeIndex (s , freq = "infer" )
980
+ result = DatetimeIndex (s , freq = "infer" )
981
981
tm .assert_index_equal (result , dr )
982
982
983
983
# inference
@@ -1000,8 +1000,8 @@ def test_constructor_with_datetime_tz(self):
1000
1000
assert lib .infer_dtype (s , skipna = True ) == "datetime"
1001
1001
1002
1002
# with all NaT
1003
- s = Series (pd . NaT , index = [0 , 1 ], dtype = "datetime64[ns, US/Eastern]" )
1004
- expected = Series (pd . DatetimeIndex (["NaT" , "NaT" ], tz = "US/Eastern" ))
1003
+ s = Series (NaT , index = [0 , 1 ], dtype = "datetime64[ns, US/Eastern]" )
1004
+ expected = Series (DatetimeIndex (["NaT" , "NaT" ], tz = "US/Eastern" ))
1005
1005
tm .assert_series_equal (s , expected )
1006
1006
1007
1007
@pytest .mark .parametrize ("arr_dtype" , [np .int64 , np .float64 ])
@@ -1018,7 +1018,7 @@ def test_construction_to_datetimelike_unit(self, arr_dtype, dtype, unit):
1018
1018
1019
1019
tm .assert_series_equal (result , expected )
1020
1020
1021
- @pytest .mark .parametrize ("arg" , ["2013-01-01 00:00:00" , pd . NaT , np .nan , None ])
1021
+ @pytest .mark .parametrize ("arg" , ["2013-01-01 00:00:00" , NaT , np .nan , None ])
1022
1022
def test_constructor_with_naive_string_and_datetimetz_dtype (self , arg ):
1023
1023
# GH 17415: With naive string
1024
1024
result = Series ([arg ], dtype = "datetime64[ns, CET]" )
@@ -1302,7 +1302,7 @@ def test_constructor_dtype_timedelta64(self):
1302
1302
td = Series ([timedelta (days = 1 ), np .nan ], dtype = "m8[ns]" )
1303
1303
assert td .dtype == "timedelta64[ns]"
1304
1304
1305
- td = Series ([np .timedelta64 (300000000 ), pd . NaT ], dtype = "m8[ns]" )
1305
+ td = Series ([np .timedelta64 (300000000 ), NaT ], dtype = "m8[ns]" )
1306
1306
assert td .dtype == "timedelta64[ns]"
1307
1307
1308
1308
# improved inference
@@ -1317,7 +1317,7 @@ def test_constructor_dtype_timedelta64(self):
1317
1317
td = Series ([np .timedelta64 (300000000 ), np .nan ])
1318
1318
assert td .dtype == "timedelta64[ns]"
1319
1319
1320
- td = Series ([pd . NaT , np .timedelta64 (300000000 )])
1320
+ td = Series ([NaT , np .timedelta64 (300000000 )])
1321
1321
assert td .dtype == "timedelta64[ns]"
1322
1322
1323
1323
td = Series ([np .timedelta64 (1 , "s" )])
@@ -1349,13 +1349,13 @@ def test_constructor_dtype_timedelta64(self):
1349
1349
assert td .dtype == "object"
1350
1350
1351
1351
# these will correctly infer a timedelta
1352
- s = Series ([None , pd . NaT , "1 Day" ])
1352
+ s = Series ([None , NaT , "1 Day" ])
1353
1353
assert s .dtype == "timedelta64[ns]"
1354
- s = Series ([np .nan , pd . NaT , "1 Day" ])
1354
+ s = Series ([np .nan , NaT , "1 Day" ])
1355
1355
assert s .dtype == "timedelta64[ns]"
1356
- s = Series ([pd . NaT , None , "1 Day" ])
1356
+ s = Series ([NaT , None , "1 Day" ])
1357
1357
assert s .dtype == "timedelta64[ns]"
1358
- s = Series ([pd . NaT , np .nan , "1 Day" ])
1358
+ s = Series ([NaT , np .nan , "1 Day" ])
1359
1359
assert s .dtype == "timedelta64[ns]"
1360
1360
1361
1361
# GH 16406
@@ -1606,7 +1606,7 @@ def test_constructor_dict_multiindex(self):
1606
1606
_d = sorted (d .items ())
1607
1607
result = Series (d )
1608
1608
expected = Series (
1609
- [x [1 ] for x in _d ], index = pd . MultiIndex .from_tuples ([x [0 ] for x in _d ])
1609
+ [x [1 ] for x in _d ], index = MultiIndex .from_tuples ([x [0 ] for x in _d ])
1610
1610
)
1611
1611
tm .assert_series_equal (result , expected )
1612
1612
0 commit comments