Skip to content

Commit 1d38656

Browse files
SakiTakamachinielsdosGirgias
authored
ext/bcmath: Changed the bcmul calculation method (#14213)
Multiplication is performed after converting to uint32_t/uint64_t, making calculations faster. --------- Co-authored-by: Niels Dossche <[email protected]> Co-authored-by: Gina Peter Banyard <[email protected]>
1 parent 39b48f8 commit 1d38656

File tree

1 file changed

+130
-196
lines changed

1 file changed

+130
-196
lines changed

ext/bcmath/libbcmath/src/recmul.c

Lines changed: 130 additions & 196 deletions
Original file line numberDiff line numberDiff line change
@@ -36,217 +36,149 @@
3636
#include "private.h" /* For _bc_rm_leading_zeros() */
3737
#include "zend_alloc.h"
3838

39-
/* Recursive vs non-recursive multiply crossover ranges. */
40-
#if defined(MULDIGITS)
41-
#include "muldigits.h"
39+
40+
#if SIZEOF_SIZE_T >= 8
41+
# define BC_MUL_UINT_DIGITS 8
42+
# define BC_MUL_UINT_OVERFLOW 100000000
4243
#else
43-
#define MUL_BASE_DIGITS 80
44+
# define BC_MUL_UINT_DIGITS 4
45+
# define BC_MUL_UINT_OVERFLOW 10000
4446
#endif
4547

46-
int mul_base_digits = MUL_BASE_DIGITS;
47-
#define MUL_SMALL_DIGITS mul_base_digits/4
4848

4949
/* Multiply utility routines */
5050

51-
static bc_num new_sub_num(size_t length, size_t scale, char *value)
52-
{
53-
bc_num temp = (bc_num) emalloc(sizeof(bc_struct));
54-
55-
temp->n_sign = PLUS;
56-
temp->n_len = length;
57-
temp->n_scale = scale;
58-
temp->n_refs = 1;
59-
temp->n_value = value;
60-
return temp;
61-
}
62-
63-
static void _bc_simp_mul(bc_num n1, size_t n1len, bc_num n2, int n2len, bc_num *prod)
51+
/*
52+
* Converts BCD to uint, going backwards from pointer n by the number of
53+
* characters specified by len.
54+
*/
55+
static inline BC_UINT_T bc_partial_convert_to_uint(const char *n, size_t len)
6456
{
65-
char *n1ptr, *n2ptr, *pvptr;
66-
char *n1end, *n2end; /* To the end of n1 and n2. */
67-
int sum = 0;
57+
BC_UINT_T num = 0;
58+
BC_UINT_T base = 1;
6859

69-
int prodlen = n1len + n2len + 1;
60+
for (size_t i = 0; i < len; i++) {
61+
num += *n * base;
62+
base *= BASE;
63+
n--;
64+
}
7065

71-
*prod = bc_new_num_nonzeroed(prodlen, 0);
66+
return num;
67+
}
7268

73-
n1end = (char *) (n1->n_value + n1len - 1);
74-
n2end = (char *) (n2->n_value + n2len - 1);
75-
pvptr = (char *) ((*prod)->n_value + prodlen - 1);
76-
77-
/* Here is the loop... */
78-
for (int index = 0; index < prodlen - 1; index++) {
79-
n1ptr = (char *) (n1end - MAX(0, index - n2len + 1));
80-
n2ptr = (char *) (n2end - MIN(index, n2len - 1));
81-
while ((n1ptr >= n1->n_value) && (n2ptr <= n2end)) {
82-
sum += *n1ptr * *n2ptr;
83-
n1ptr--;
84-
n2ptr++;
85-
}
86-
*pvptr-- = sum % BASE;
87-
sum = sum / BASE;
69+
static inline void bc_convert_to_uint(BC_UINT_T *n_uint, const char *nend, size_t nlen)
70+
{
71+
size_t i = 0;
72+
while (nlen > 0) {
73+
size_t len = MIN(BC_MUL_UINT_DIGITS, nlen);
74+
n_uint[i] = bc_partial_convert_to_uint(nend, len);
75+
nend -= len;
76+
nlen -= len;
77+
i++;
8878
}
89-
*pvptr = sum;
9079
}
9180

92-
93-
/* A special adder/subtractor for the recursive divide and conquer
94-
multiply algorithm. Note: if sub is called, accum must
95-
be larger that what is being subtracted. Also, accum and val
96-
must have n_scale = 0. (e.g. they must look like integers. *) */
97-
static void _bc_shift_addsub(bc_num accum, bc_num val, int shift, bool sub)
81+
/*
82+
* If the n_values of n1 and n2 are both 4 (32-bit) or 8 (64-bit) digits or less,
83+
* the calculation will be performed at high speed without using an array.
84+
*/
85+
static inline void bc_fast_mul(bc_num n1, size_t n1len, bc_num n2, int n2len, bc_num *prod)
9886
{
99-
signed char *accp, *valp;
100-
unsigned int carry = 0;
101-
size_t count = val->n_len;
87+
const char *n1end = n1->n_value + n1len - 1;
88+
const char *n2end = n2->n_value + n2len - 1;
10289

103-
if (val->n_value[0] == 0) {
104-
count--;
105-
}
106-
assert(accum->n_len + accum->n_scale >= shift + count);
107-
108-
/* Set up pointers and others */
109-
accp = (signed char *) (accum->n_value + accum->n_len + accum->n_scale - shift - 1);
110-
valp = (signed char *) (val->n_value + val->n_len - 1);
111-
112-
if (sub) {
113-
/* Subtraction, carry is really borrow. */
114-
while (count--) {
115-
*accp -= *valp-- + carry;
116-
if (*accp < 0) {
117-
carry = 1;
118-
*accp-- += BASE;
119-
} else {
120-
carry = 0;
121-
accp--;
122-
}
123-
}
124-
while (carry) {
125-
*accp -= carry;
126-
if (*accp < 0) {
127-
*accp-- += BASE;
128-
} else {
129-
carry = 0;
130-
}
131-
}
132-
} else {
133-
/* Addition */
134-
while (count--) {
135-
*accp += *valp-- + carry;
136-
if (*accp > (BASE - 1)) {
137-
carry = 1;
138-
*accp-- -= BASE;
139-
} else {
140-
carry = 0;
141-
accp--;
142-
}
143-
}
144-
while (carry) {
145-
*accp += carry;
146-
if (*accp > (BASE - 1)) {
147-
*accp-- -= BASE;
148-
} else {
149-
carry = 0;
150-
}
151-
}
90+
BC_UINT_T n1_uint = bc_partial_convert_to_uint(n1end, n1len);
91+
BC_UINT_T n2_uint = bc_partial_convert_to_uint(n2end, n2len);
92+
BC_UINT_T prod_uint = n1_uint * n2_uint;
93+
94+
size_t prodlen = n1len + n2len;
95+
*prod = bc_new_num_nonzeroed(prodlen, 0);
96+
char *pptr = (*prod)->n_value;
97+
char *pend = pptr + prodlen - 1;
98+
99+
while (pend >= pptr) {
100+
*pend-- = prod_uint % BASE;
101+
prod_uint /= BASE;
152102
}
153103
}
154104

155-
/* Recursive divide and conquer multiply algorithm.
156-
Based on
157-
Let u = u0 + u1*(b^n)
158-
Let v = v0 + v1*(b^n)
159-
Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0
160-
161-
B is the base of storage, number of digits in u1,u0 close to equal.
162-
*/
163-
static void _bc_rec_mul(bc_num u, size_t ulen, bc_num v, size_t vlen, bc_num *prod)
105+
/*
106+
* Converts the BCD of bc_num by 4 (32 bits) or 8 (64 bits) digits to an array of BC_UINT_Ts.
107+
* The array is generated starting with the smaller digits.
108+
* e.g. 12345678901234567890 => {34567890, 56789012, 1234}
109+
*
110+
* Multiply and add these groups of numbers to perform multiplication fast.
111+
* How much to shift the digits when adding values can be calculated from the index of the array.
112+
*/
113+
static void bc_standard_mul(bc_num n1, size_t n1len, bc_num n2, size_t n2len, bc_num *prod)
164114
{
165-
bc_num u0, u1, v0, v1;
166-
bc_num m1, m2, m3;
167-
size_t n;
168-
bool m1zero;
169-
170-
/* Base case? */
171-
if ((ulen + vlen) < mul_base_digits
172-
|| ulen < MUL_SMALL_DIGITS
173-
|| vlen < MUL_SMALL_DIGITS
174-
) {
175-
_bc_simp_mul(u, ulen, v, vlen, prod);
176-
return;
115+
size_t i;
116+
const char *n1end = n1->n_value + n1len - 1;
117+
const char *n2end = n2->n_value + n2len - 1;
118+
size_t prodlen = n1len + n2len;
119+
120+
size_t n1_arr_size = (n1len + BC_MUL_UINT_DIGITS - 1) / BC_MUL_UINT_DIGITS;
121+
size_t n2_arr_size = (n2len + BC_MUL_UINT_DIGITS - 1) / BC_MUL_UINT_DIGITS;
122+
size_t prod_arr_size = n1_arr_size + n2_arr_size - 1;
123+
124+
/*
125+
* let's say that N is the max of n1len and n2len (and a multiple of BC_MUL_UINT_DIGITS for simplicity),
126+
* then this sum is <= N/BC_MUL_UINT_DIGITS + N/BC_MUL_UINT_DIGITS + N/BC_MUL_UINT_DIGITS + N/BC_MUL_UINT_DIGITS - 1
127+
* which is equal to N - 1 if BC_MUL_UINT_DIGITS is 4, and N/2 - 1 if BC_MUL_UINT_DIGITS is 8.
128+
*/
129+
BC_UINT_T *buf = safe_emalloc(n1_arr_size + n2_arr_size + prod_arr_size, sizeof(BC_UINT_T), 0);
130+
131+
BC_UINT_T *n1_uint = buf;
132+
BC_UINT_T *n2_uint = buf + n1_arr_size;
133+
BC_UINT_T *prod_uint = n2_uint + n2_arr_size;
134+
135+
for (i = 0; i < prod_arr_size; i++) {
136+
prod_uint[i] = 0;
177137
}
178138

179-
/* Calculate n -- the u and v split point in digits. */
180-
n = (MAX(ulen, vlen) + 1) / 2;
139+
/* Convert to uint[] */
140+
bc_convert_to_uint(n1_uint, n1end, n1len);
141+
bc_convert_to_uint(n2_uint, n2end, n2len);
181142

182-
/* Split u and v. */
183-
if (ulen < n) {
184-
u1 = bc_copy_num(BCG(_zero_));
185-
u0 = new_sub_num(ulen, 0, u->n_value);
186-
} else {
187-
u1 = new_sub_num(ulen - n, 0, u->n_value);
188-
u0 = new_sub_num(n, 0, u->n_value + ulen - n);
189-
}
190-
if (vlen < n) {
191-
v1 = bc_copy_num(BCG(_zero_));
192-
v0 = new_sub_num(vlen, 0, v->n_value);
193-
} else {
194-
v1 = new_sub_num(vlen - n, 0, v->n_value);
195-
v0 = new_sub_num(n, 0, v->n_value + vlen - n);
143+
/* Multiplication and addition */
144+
for (i = 0; i < n1_arr_size; i++) {
145+
for (size_t j = 0; j < n2_arr_size; j++) {
146+
prod_uint[i + j] += n1_uint[i] * n2_uint[j];
147+
}
196148
}
197-
_bc_rm_leading_zeros(u1);
198-
_bc_rm_leading_zeros(u0);
199-
_bc_rm_leading_zeros(v1);
200-
_bc_rm_leading_zeros(v0);
201-
202-
m1zero = bc_is_zero(u1) || bc_is_zero(v1);
203-
204-
/* Calculate sub results ... */
205-
206-
bc_num d1 = bc_sub(u1, u0, 0);
207-
bc_num d2 = bc_sub(v0, v1, 0);
208149

209-
210-
/* Do recursive multiplies and shifted adds. */
211-
if (m1zero) {
212-
m1 = bc_copy_num(BCG(_zero_));
213-
} else {
214-
_bc_rec_mul(u1, u1->n_len, v1, v1->n_len, &m1);
150+
/*
151+
* Move a value exceeding 4/8 digits by carrying to the next digit.
152+
* However, the last digit does nothing.
153+
*/
154+
for (i = 0; i < prod_arr_size - 1; i++) {
155+
prod_uint[i + 1] += prod_uint[i] / BC_MUL_UINT_OVERFLOW;
156+
prod_uint[i] %= BC_MUL_UINT_OVERFLOW;
215157
}
216158

217-
if (bc_is_zero(d1) || bc_is_zero(d2)) {
218-
m2 = bc_copy_num(BCG(_zero_));
219-
} else {
220-
_bc_rec_mul(d1, d1->n_len, d2, d2->n_len, &m2);
159+
/* Convert to bc_num */
160+
*prod = bc_new_num_nonzeroed(prodlen, 0);
161+
char *pptr = (*prod)->n_value;
162+
char *pend = pptr + prodlen - 1;
163+
i = 0;
164+
while (i < prod_arr_size - 1) {
165+
for (size_t j = 0; j < BC_MUL_UINT_DIGITS; j++) {
166+
*pend-- = prod_uint[i] % BASE;
167+
prod_uint[i] /= BASE;
168+
}
169+
i++;
221170
}
222171

223-
if (bc_is_zero(u0) || bc_is_zero(v0)) {
224-
m3 = bc_copy_num(BCG(_zero_));
225-
} else {
226-
_bc_rec_mul(u0, u0->n_len, v0, v0->n_len, &m3);
172+
/*
173+
* The last digit may carry over.
174+
* Also need to fill it to the end with zeros, so loop until the end of the string.
175+
*/
176+
while (pend >= pptr) {
177+
*pend-- = prod_uint[i] % BASE;
178+
prod_uint[i] /= BASE;
227179
}
228180

229-
/* Initialize product */
230-
*prod = bc_new_num(ulen + vlen + 1, 0);
231-
232-
if (!m1zero) {
233-
_bc_shift_addsub(*prod, m1, 2 * n, false);
234-
_bc_shift_addsub(*prod, m1, n, false);
235-
}
236-
_bc_shift_addsub(*prod, m3, n, false);
237-
_bc_shift_addsub(*prod, m3, 0, false);
238-
_bc_shift_addsub(*prod, m2, n, d1->n_sign != d2->n_sign);
239-
240-
/* Now clean up! */
241-
bc_free_num (&u1);
242-
bc_free_num (&u0);
243-
bc_free_num (&v1);
244-
bc_free_num (&m1);
245-
bc_free_num (&v0);
246-
bc_free_num (&m2);
247-
bc_free_num (&m3);
248-
bc_free_num (&d1);
249-
bc_free_num (&d2);
181+
efree(buf);
250182
}
251183

252184
/* The multiply routine. N2 times N1 is put int PROD with the scale of
@@ -255,26 +187,28 @@ static void _bc_rec_mul(bc_num u, size_t ulen, bc_num v, size_t vlen, bc_num *pr
255187

256188
bc_num bc_multiply(bc_num n1, bc_num n2, size_t scale)
257189
{
258-
bc_num pval;
259-
size_t len1, len2;
260-
size_t full_scale, prod_scale;
190+
bc_num prod;
261191

262192
/* Initialize things. */
263-
len1 = n1->n_len + n1->n_scale;
264-
len2 = n2->n_len + n2->n_scale;
265-
full_scale = n1->n_scale + n2->n_scale;
266-
prod_scale = MIN(full_scale, MAX(scale, MAX(n1->n_scale, n2->n_scale)));
193+
size_t len1 = n1->n_len + n1->n_scale;
194+
size_t len2 = n2->n_len + n2->n_scale;
195+
size_t full_scale = n1->n_scale + n2->n_scale;
196+
size_t prod_scale = MIN(full_scale, MAX(scale, MAX(n1->n_scale, n2->n_scale)));
267197

268198
/* Do the multiply */
269-
_bc_rec_mul(n1, len1, n2, len2, &pval);
199+
if (len1 <= BC_MUL_UINT_DIGITS && len2 <= BC_MUL_UINT_DIGITS) {
200+
bc_fast_mul(n1, len1, n2, len2, &prod);
201+
} else {
202+
bc_standard_mul(n1, len1, n2, len2, &prod);
203+
}
270204

271205
/* Assign to prod and clean up the number. */
272-
pval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
273-
pval->n_len = len2 + len1 + 1 - full_scale;
274-
pval->n_scale = prod_scale;
275-
_bc_rm_leading_zeros(pval);
276-
if (bc_is_zero(pval)) {
277-
pval->n_sign = PLUS;
206+
prod->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
207+
prod->n_len -= full_scale;
208+
prod->n_scale = prod_scale;
209+
_bc_rm_leading_zeros(prod);
210+
if (bc_is_zero(prod)) {
211+
prod->n_sign = PLUS;
278212
}
279-
return pval;
213+
return prod;
280214
}

0 commit comments

Comments
 (0)