Skip to content

Commit d7928b0

Browse files
committed
Merge remote-tracking branch 'origin/master' into orjson_encoding
2 parents ddc1b8f + 7540acf commit d7928b0

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

67 files changed

+1388
-1020
lines changed

CHANGELOG.md

+12-6
Original file line numberDiff line numberDiff line change
@@ -2,22 +2,28 @@
22
All notable changes to this project will be documented in this file.
33
This project adheres to [Semantic Versioning](http://semver.org/).
44

5-
## [4.15.0] - UNRELEASED
65

7-
### Added
6+
## [4.14.3] - 2021-01-12
87

98
### Fixed
109

11-
### Updated
10+
- `px.timeline()` now allows `hover_data` formatting of start and end times [3018](https://github.com/plotly/plotly.py/pull/3018)
11+
- Small change to packaging of `plotlywidget` extension for JupyterLab 3 [3021](https://github.com/plotly/plotly.py/pull/3021)
1212

13+
## [4.14.2] - 2021-01-11
1314

14-
## [4.14.2] - UNRELEASED
15+
### Updated
1516

16-
### Added
17+
- JupyterLab extensions now compatible with JupyterLab 3.x [3016](https://github.com/plotly/plotly.py/pull/3016)
18+
- Updated Plotly.js to version 1.58.4. See the [plotly.js CHANGELOG](https://github.com/plotly/plotly.js/blob/v1.58.4/CHANGELOG.md) for more information. These changes are reflected in the auto-generated `plotly.graph_objects` module. Notable changes include:
19+
- fixes for rendering 3d plots on recent Safari versions
20+
- fixes to inside ticklabels
21+
- regression fixes
1722

1823
### Fixed
1924

20-
### Updated
25+
- `px.histogram()` Y-axis labels now take into account `histnorm` and `barnorm` [2989](https://github.com/plotly/plotly.py/pull/2989)
26+
- `px.histogram()` `marginal` and `facet_*` now work correctly together [3014](https://github.com/plotly/plotly.py/pull/3014)
2127

2228

2329
## [4.14.1] - 2020-12-09

README.md

+15-15
Original file line numberDiff line numberDiff line change
@@ -37,9 +37,9 @@ Our recommended IDE for Plotly’s Python graphing library is Dash Enterprise’
3737

3838
## Quickstart
3939

40-
`pip install plotly==4.14.1`
40+
`pip install plotly==4.14.3`
4141

42-
Inside [Jupyter notebook](https://jupyter.org/install) (installable with `pip install "notebook>=5.3" "ipywidgets>=7.2"`):
42+
Inside [Jupyter notebook](https://jupyter.org/install) (installable with `pip install "notebook>=5.3" "ipywidgets>=7.5"`):
4343

4444
```python
4545
import plotly.graph_objects as go
@@ -86,53 +86,53 @@ Built on top of [plotly.js](https://github.com/plotly/plotly.js), `plotly.py` is
8686
plotly.py may be installed using pip...
8787

8888
```
89-
pip install plotly==4.14.1
89+
pip install plotly==4.14.3
9090
```
9191

9292
or conda.
9393

9494
```
95-
conda install -c plotly plotly=4.14.1
95+
conda install -c plotly plotly=4.14.3
9696
```
9797

9898
### Jupyter Notebook Support
9999

100100
For use in the Jupyter Notebook, install the `notebook` and `ipywidgets`
101-
packages using pip...
101+
packages using `pip`:
102102

103103
```
104-
pip install "notebook>=5.3" "ipywidgets==7.5"
104+
pip install "notebook>=5.3" "ipywidgets>=7.5"
105105
```
106106

107-
or conda.
107+
or `conda`:
108108

109109
```
110-
conda install "notebook>=5.3" "ipywidgets=7.5"
110+
conda install "notebook>=5.3" "ipywidgets>=7.5"
111111
```
112112

113-
### JupyterLab Support (Python 3.5+)
113+
### JupyterLab Support
114114

115115
For use in JupyterLab, install the `jupyterlab` and `ipywidgets`
116-
packages using pip...
116+
packages using `pip`:
117117

118118
```
119-
pip install jupyterlab "ipywidgets==7.5"
119+
pip install jupyterlab "ipywidgets>=7.5"
120120
```
121121

122-
or conda.
122+
or `conda`:
123123

124124
```
125-
conda install jupyterlab "ipywidgets=7.5"
125+
conda install jupyterlab "ipywidgets>=7.5"
126126
```
127127

128128
Then run the following commands to install the required JupyterLab extensions (note that this will require [`node`](https://nodejs.org/) to be installed):
129129

130130
```
131131
# Basic JupyterLab renderer support
132-
jupyter labextension install [email protected].1
132+
jupyter labextension install [email protected].3
133133
134134
# OPTIONAL: Jupyter widgets extension for FigureWidget support
135-
jupyter labextension install @jupyter-widgets/jupyterlab-manager [email protected].1
135+
jupyter labextension install @jupyter-widgets/jupyterlab-manager [email protected].3
136136
```
137137

138138
Please check out our [Troubleshooting guide](https://plotly.com/python/troubleshooting/) if you run into any problems with JupyterLab.

binder/requirements.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
jupytext
2-
plotly==4.14.1
2+
plotly==4.14.3
33
jupyter
44
notebook
55
pandas==1.0.3

doc/apidoc/conf.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@
2828
# The short X.Y version
2929
version = ""
3030
# The full version, including alpha/beta/rc tags
31-
release = "4.14.1"
31+
release = "4.14.3"
3232

3333

3434
# -- General configuration ---------------------------------------------------

doc/python/builtin-colorscales.md

+15-2
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ jupyter:
66
extension: .md
77
format_name: markdown
88
format_version: '1.2'
9-
jupytext_version: 1.4.2
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.7.7
23+
version: 3.7.6
2424
plotly:
2525
description: A reference for the built-in named continuous (sequential, diverging
2626
and cylclical) color scales in Plotly.
@@ -74,6 +74,19 @@ import plotly.express as px
7474
print(px.colors.sequential.Plasma)
7575
```
7676

77+
### Continuous Color Scales in Dash
78+
79+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
80+
81+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
82+
83+
84+
```python hide_code=true
85+
from IPython.display import IFrame
86+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
87+
IFrame(snippet_url + 'builtin-colorscales', width='100%', height=630)
88+
```
89+
7790
### Built-In Sequential Color scales
7891

7992
A collection of predefined sequential colorscales is provided in the `plotly.colors.sequential` module. Sequential color scales are appropriate for most continuous data, but in some cases it can be helpful to use a diverging or cyclical color scale (see below).

doc/python/getting-started.md

+14-14
Original file line numberDiff line numberDiff line change
@@ -56,16 +56,16 @@ We also encourage you to join the [Plotly Community Forum](http://community.plot
5656

5757
### Installation
5858

59-
`plotly` may be installed using pip...
59+
`plotly` may be installed using `pip`:
6060

6161
```
62-
$ pip install plotly==4.14.1
62+
$ pip install plotly==4.14.3
6363
```
6464

65-
or conda.
65+
or `conda`:
6666

6767
```
68-
$ conda install -c plotly plotly=4.14.1
68+
$ conda install -c plotly plotly=4.14.3
6969
```
7070

7171
This package contains everything you need to write figures to standalone HTML files.
@@ -98,16 +98,16 @@ IFrame(snippet_url + 'getting-started', width='100%', height=630)
9898
#### Jupyter Notebook Support
9999

100100
For use in the classic [Jupyter Notebook](https://jupyter.org/), install the `notebook` and `ipywidgets`
101-
packages using pip...
101+
packages using `pip`:
102102

103103
```
104-
$ pip install "notebook>=5.3" "ipywidgets>=7.2"
104+
$ pip install "notebook>=5.3" "ipywidgets>=7.5"
105105
```
106106

107-
or conda.
107+
or `conda`:
108108

109109
```
110-
$ conda install "notebook>=5.3" "ipywidgets>=7.2"
110+
$ conda install "notebook>=5.3" "ipywidgets>=7.5"
111111
```
112112

113113
These packages contain everything you need to run a Jupyter notebook...
@@ -138,29 +138,29 @@ fig
138138

139139
See [_Displaying Figures in Python_](/python/renderers/) for more information on the renderers framework, and see [_Plotly FigureWidget Overview_](/python/figurewidget/) for more information on using `FigureWidget`.
140140

141-
#### JupyterLab Support (Python 3.5+)
141+
#### JupyterLab Support
142142

143143
For use in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/), install the `jupyterlab` and `ipywidgets`
144-
packages using pip...
144+
packages using `pip`:
145145

146146
```
147147
$ pip install jupyterlab "ipywidgets>=7.5"
148148
```
149149

150-
or conda.
150+
or `conda`:
151151

152152
```
153-
$ conda install jupyterlab "ipywidgets=7.5"
153+
$ conda install jupyterlab "ipywidgets>=7.5"
154154
```
155155

156156
Then run the following commands to install the required JupyterLab extensions (note that this will require [`node`](https://nodejs.org/) to be installed):
157157

158158
```
159159
# JupyterLab renderer support
160-
jupyter labextension install [email protected].1
160+
jupyter labextension install [email protected].3
161161
162162
# OPTIONAL: Jupyter widgets extension
163-
jupyter labextension install @jupyter-widgets/jupyterlab-manager [email protected].1
163+
jupyter labextension install @jupyter-widgets/jupyterlab-manager [email protected].3
164164
```
165165

166166
These packages contain everything you need to run JupyterLab...

doc/python/heatmaps.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ fig.show()
102102

103103
### Heatmap with Categorical Axis Labels
104104

105-
In this example we also show how to ignore [hovertext](https://plotly.com/python/hover-text-and-formatting/) when we have [missing values](https://plotly.com/python/missing_values) in the data by setting the [hoverongaps](https://plotly.com/python/reference/heatmap/#heatmap-hoverongaps) to False.
105+
In this example we also show how to ignore [hovertext](https://plotly.com/python/hover-text-and-formatting/) when we have missing values in the data by setting the [hoverongaps](https://plotly.com/python/reference/heatmap/#heatmap-hoverongaps) to False.
106106

107107
```python
108108
import plotly.graph_objects as go

doc/python/horizontal-vertical-shapes.md

+15-2
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ jupyter:
66
extension: .md
77
format_name: markdown
88
format_version: '1.2'
9-
jupytext_version: 1.4.2
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.7.7
23+
version: 3.7.6
2424
plotly:
2525
description: How to add annotated horizontal and vertical lines in Python.
2626
display_as: file_settings
@@ -67,6 +67,19 @@ fig.add_hrect(y0=0.9, y1=2.6, line_width=0, fillcolor="red", opacity=0.2)
6767
fig.show()
6868
```
6969

70+
#### Horizontal and vertical lines in Dash
71+
72+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
73+
74+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
75+
76+
77+
```python hide_code=true
78+
from IPython.display import IFrame
79+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
80+
IFrame(snippet_url + 'horizontal-vertical-shapes', width='100%', height=630)
81+
```
82+
7083
#### Adding Text Annotations
7184

7285
[Text annotations](/python/text-and-annotations) can optionally be added to an autoshape

doc/python/hover-text-and-formatting.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ jupyter:
3434

3535
### Hover Labels
3636

37-
One of the most deceptively-power features of interactive visualization using Plotly is the ability for the user to reveal more information about a data point by moving their mouse cursor over the point and having a hover label appear.
37+
One of the most deceptively-powerful features of interactive visualization using Plotly is the ability for the user to reveal more information about a data point by moving their mouse cursor over the point and having a hover label appear.
3838

3939
There are three hover modes available in Plotly. The default setting is `layout.hovermode='closest'`, wherein a single hover label appears for the point directly underneath the cursor.
4040

doc/python/imshow.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -450,7 +450,7 @@ from skimage.data import image_fetcher
450450
path = image_fetcher.fetch('data/cells.tif')
451451
data = io.imread(path)
452452
img = data[25:40]
453-
fig = px.imshow(img, animation_frame=0, binary_string=True, labels=dict(animation_frame="yo"))
453+
fig = px.imshow(img, animation_frame=0, binary_string=True, labels=dict(animation_frame="slice"))
454454
fig.show()
455455
```
456456

doc/python/interactive-html-export.md

+16-3
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ jupyter:
66
extension: .md
77
format_name: markdown
88
format_version: '1.2'
9-
jupytext_version: 1.3.1
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.6.8
23+
version: 3.7.6
2424
plotly:
2525
description: Plotly allows you to save interactive HTML versions of your figures
2626
to your local disk.
@@ -56,10 +56,23 @@ fig.write_html("path/to/file.html")
5656
By default, the resulting HTML file is a fully self-contained HTML file which can be uploaded to a web server or shared via email or other file-sharing mechanisms. The downside to this approach is that the file is very large (5Mb+) because it contains an inlined copy of the Plotly.js library required to make the figure interactive. This can be controlled via the `include_plotlyjs` argument (see below).
5757

5858

59+
### HTML export in Dash
60+
61+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
62+
63+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
64+
65+
66+
```python hide_code=true
67+
from IPython.display import IFrame
68+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
69+
IFrame(snippet_url + 'interactive-html-export', width='100%', height=630)
70+
```
71+
5972
### Full Parameter Documentation
6073

6174
```python
6275
import plotly.graph_objects as go
6376

6477
help(go.Figure.write_html)
65-
```
78+
```

doc/python/mapbox-county-choropleth.md

+15-2
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ jupyter:
66
extension: .md
77
format_name: markdown
88
format_version: '1.2'
9-
jupytext_version: 1.4.2
9+
jupytext_version: 1.6.0
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.7.7
23+
version: 3.7.6
2424
plotly:
2525
description: How to make a Mapbox Choropleth Map of US Counties in Python with
2626
Plotly.
@@ -107,6 +107,19 @@ fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
107107
fig.show()
108108
```
109109

110+
### Choropleth maps in Dash
111+
112+
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
113+
114+
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
115+
116+
117+
```python hide_code=true
118+
from IPython.display import IFrame
119+
snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/'
120+
IFrame(snippet_url + 'mapbox-county-choropleth', width='100%', height=630)
121+
```
122+
110123
### Indexing by GeoJSON Properties
111124

112125
If the GeoJSON you are using either does not have an `id` field or you wish you use one of the keys in the `properties` field, you may use the `featureidkey` parameter to specify where to match the values of `locations`.

0 commit comments

Comments
 (0)