@@ -88,7 +88,7 @@ To detect these missing value, use the :func:`isna` or :func:`notna` methods.
88
88
89
89
.. warning ::
90
90
91
- Experimental: the behaviour of :class: `NA` ` can still change without warning.
91
+ Experimental: the behaviour of :class: `NA ` can still change without warning.
92
92
93
93
Starting from pandas 1.0, an experimental :class: `NA ` value (singleton) is
94
94
available to represent scalar missing values. The goal of :class: `NA ` is provide a
@@ -105,7 +105,7 @@ dtype, it will use :class:`NA`:
105
105
s[2 ]
106
106
s[2 ] is pd.NA
107
107
108
- Currently, pandas does not yet use those data types using :class: `NA ` by default
108
+ Currently, pandas does not use those data types using :class: `NA ` by default in
109
109
a :class: `DataFrame ` or :class: `Series `, so you need to specify
110
110
the dtype explicitly. An easy way to convert to those dtypes is explained in the
111
111
:ref: `conversion section <missing_data.NA.conversion >`.
@@ -253,8 +253,8 @@ Conversion
253
253
^^^^^^^^^^
254
254
255
255
If you have a :class: `DataFrame ` or :class: `Series ` using ``np.nan ``,
256
- :meth: `Series .convert_dtypes ` and :meth: `DataFrame .convert_dtypes `
257
- in :class: ` DataFrame ` that can convert data to use the data types that use :class: `NA `
256
+ :meth: `DataFrame .convert_dtypes ` and :meth: `Series .convert_dtypes `, respectively,
257
+ will convert your data to use the nullable data types supporting :class: `NA `,
258
258
such as :class: `Int64Dtype ` or :class: `ArrowDtype `. This is especially helpful after reading
259
259
in data sets from IO methods where data types were inferred.
260
260
0 commit comments