27
27
from pymc .distributions .transforms import _default_transform
28
28
from pymc .logprob .basic import logp
29
29
from pymc .model import modelcontext
30
- from pymc .pytensorf import floatX , intX
31
30
from pymc .util import check_dist_not_registered
32
31
33
32
__all__ = ["Bound" ]
@@ -206,7 +205,7 @@ def __new__(
206
205
res = _ContinuousBounded (
207
206
name ,
208
207
[dist , lower , upper ],
209
- initval = floatX ( initval ),
208
+ initval = initval . astype ( "float" ),
210
209
size = size ,
211
210
shape = shape ,
212
211
** kwargs ,
@@ -215,7 +214,7 @@ def __new__(
215
214
res = _DiscreteBounded (
216
215
name ,
217
216
[dist , lower , upper ],
218
- initval = intX ( initval ),
217
+ initval = initval . astype ( "int" ),
219
218
size = size ,
220
219
shape = shape ,
221
220
** kwargs ,
@@ -241,15 +240,15 @@ def dist(
241
240
shape = shape ,
242
241
** kwargs ,
243
242
)
244
- res .tag .test_value = floatX ( initval )
243
+ res .tag .test_value = initval
245
244
else :
246
245
res = _DiscreteBounded .dist (
247
246
[dist , lower , upper ],
248
247
size = size ,
249
248
shape = shape ,
250
249
** kwargs ,
251
250
)
252
- res .tag .test_value = intX ( initval )
251
+ res .tag .test_value = initval . astype ( "int" )
253
252
return res
254
253
255
254
@classmethod
@@ -286,9 +285,9 @@ def _set_values(cls, lower, upper, size, shape, initval):
286
285
size = shape
287
286
288
287
lower = np .asarray (lower )
289
- lower = floatX ( np .where (lower == None , - np .inf , lower ) ) # noqa E711
288
+ lower = np .where (lower == None , - np .inf , lower ) # noqa E711
290
289
upper = np .asarray (upper )
291
- upper = floatX ( np .where (upper == None , np .inf , upper ) ) # noqa E711
290
+ upper = np .where (upper == None , np .inf , upper ) # noqa E711
292
291
293
292
if initval is None :
294
293
_size = np .broadcast_shapes (to_tuple (size ), np .shape (lower ), np .shape (upper ))
@@ -303,7 +302,6 @@ def _set_values(cls, lower, upper, size, shape, initval):
303
302
np .where (_upper == np .inf , _lower + 1 , (_lower + _upper ) / 2 ),
304
303
),
305
304
)
306
-
307
- lower = as_tensor_variable (floatX (lower ))
308
- upper = as_tensor_variable (floatX (upper ))
305
+ lower = as_tensor_variable (lower , dtype = "floatX" )
306
+ upper = as_tensor_variable (upper , dtype = "floatX" )
309
307
return lower , upper , initval
0 commit comments