@@ -52,19 +52,26 @@ layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z_id = 2) in;
52
52
#define FLOAT_T float
53
53
#endif
54
54
55
- FLOAT_T q_8w_linear(const ivec4 out_idx, const int K) {
56
- const FLOAT_T scale = t_scales[out_idx.x];
55
+ void main() {
56
+ const int out_bufi = int (gl_GlobalInvocationID.x);
57
+ if (out_bufi >= out_numel) {
58
+ return ;
59
+ }
60
+
61
+ const ivec4 out_tidx = bufi_to_tidx(out_bufi, out_strides, 0 );
62
+
63
+ const FLOAT_T scale = t_scales[out_tidx.x];
57
64
58
65
FLOAT_T outval = FLOAT_T(0.0 );
59
66
60
- // Initial mat1 tensor idx will be (0, out_idx .y, out_idx .z, 0)
61
- int mat1_offset = out_idx .y * mat1_strides.y + out_idx .z * qmat2_strides.z;
62
- // Initial qmat2 tensor idx wil be (0, out_idx .x, 0, 0); note that the qmat2
67
+ // Initial mat1 tensor idx will be (0, out_tidx .y, out_tidx .z, 0)
68
+ int mat1_offset = out_tidx .y * mat1_strides.y + out_tidx .z * qmat2_strides.z;
69
+ // Initial qmat2 tensor idx wil be (0, out_tidx .x, 0, 0); note that the qmat2
63
70
// tensor is transposed
64
- int qmat2_offset = out_idx .x * qmat2_strides.y;
71
+ int qmat2_offset = out_tidx .x * qmat2_strides.y;
65
72
66
- // TODO(ssjia): optimize memory access pattern by traversing K in inner loop
67
- for (int i = 0 ; i < K ; i++ ) {
73
+ // TODO(ssjia): optimize memory access pattern by traversing mat1 x in inner loop
74
+ for (int i = 0 ; i < mat1_sizes.x ; i++ ) {
68
75
const FLOAT_T mat1_val = t_mat1[mat1_offset];
69
76
const FLOAT_T mat2_val = t_qmat2[qmat2_offset] * scale;
70
77
@@ -74,33 +81,32 @@ FLOAT_T q_8w_linear(const ivec4 out_idx, const int K) {
74
81
qmat2_offset++ ;
75
82
}
76
83
77
- return outval;
78
- }
79
-
80
- void main() {
81
- const int out_bufi = int (gl_GlobalInvocationID.x);
82
- if (out_bufi >= out_numel) {
83
- return ;
84
- }
85
-
86
- const ivec4 out_tidx = bufi_to_tidx(out_bufi, out_strides, 0 );
87
-
88
- t_out[out_bufi] = q_8w_linear(out_tidx, mat1_sizes.x);
84
+ t_out[out_bufi] = outval;
89
85
}
90
86
91
87
#else // USING_TEXTURE
92
88
93
89
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
94
90
95
- VEC4_T q_8w_linear(const u16vec2 out_pos, const uint16_t K) {
91
+ void main() {
92
+ const u16vec2 out_pos = u16vec2(
93
+ gl_GlobalInvocationID.x / out_limits.y,
94
+ gl_GlobalInvocationID.x % out_limits.y);
95
+ if (out_pos.x >= out_limits.x) {
96
+ return ;
97
+ }
98
+
96
99
const uint16_t qmat2_pos_y = out_pos.x * uint16_t(4 );
97
100
98
101
VEC4_T outtex = VEC4_T(0 );
99
102
100
- const u16vec3 scales_pos = u16vec3(out_pos.x, 0 , 0 );
101
- const VEC4_T scales = load_texel(t_scales, scales_pos);
103
+ const VEC4_T scales = load_texel(t_scales, u16vec3(out_pos.x, 0 , 0 ));
102
104
103
- for (uint16_t i = uint16_t(0 ), x = uint16_t(0 ); i < K; i += uint16_t(4 ), x++ ) {
105
+ for (
106
+ uint16_t i = uint16_t(0 ), x = uint16_t(0 );
107
+ i < uint16_t(mat1_sizes.x);
108
+ i += uint16_t(4 ), x++ )
109
+ {
104
110
const VEC4_T mat1_tex = load_texel(t_mat1, u16vec3(x, out_pos.y, 0 ));
105
111
const VEC4_T sums = VEC4_T(
106
112
dot (mat1_tex, load_texel(t_qmat2, u16vec3(x, qmat2_pos_y, 0 ))),
@@ -112,19 +118,6 @@ VEC4_T q_8w_linear(const u16vec2 out_pos, const uint16_t K) {
112
118
}
113
119
114
120
outtex *= scales;
115
-
116
- return outtex;
117
- }
118
-
119
- void main() {
120
- const u16vec2 out_pos = u16vec2(
121
- gl_GlobalInvocationID.x / out_limits.y,
122
- gl_GlobalInvocationID.x % out_limits.y);
123
- if (out_pos.x >= out_limits.x) {
124
- return ;
125
- }
126
-
127
- VEC4_T outtex = q_8w_linear(out_pos, uint16_t(mat1_sizes.x));
128
121
write_texel(t_out, u16vec3(out_pos, 0 ), outtex);
129
122
}
130
123
0 commit comments