Skip to content

Commit 5619e3b

Browse files
author
Svetlana Karslioglu
authored
Merge branch 'master' into maskedtensor_tutorial_4
2 parents 12df437 + 1036c92 commit 5619e3b

File tree

2 files changed

+226
-0
lines changed

2 files changed

+226
-0
lines changed
+218
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,218 @@
1+
# -*- coding: utf-8 -*-
2+
3+
"""
4+
(Prototype) Efficiently writing "sparse" semantics for Adagrad with MaskedTensor
5+
================================================================================
6+
"""
7+
8+
######################################################################
9+
# Before working through this tutorial, please review the MaskedTensor
10+
# `Overview <https://pytorch.org/tutorials/prototype/maskedtensor_overview.html>`__ and
11+
# `Sparsity <https://pytorch.org/tutorials/prototype/maskedtensor_sparsity.html>`__ tutorials.
12+
#
13+
# Introduction and Motivation
14+
# ---------------------------
15+
# `Issue 1369 <https://github.com/pytorch/pytorch/issues/1369>`__ discussed the additional lines of code
16+
# that were introduced while writing "sparse" semantics for Adagrad, but really,
17+
# the code uses sparsity as a proxy for masked semantics rather than the intended use case of sparsity:
18+
# a compression and optimization technique.
19+
# Previously, we worked around the lack of formal masked semantics by introducing one-off semantics and operators
20+
# while forcing users to be aware of storage details such as indices and values.
21+
#
22+
# Now that we have masked semantics, we are better equipped to point out when sparsity is used as a semantic extension.
23+
# We'll also compare and contrast this with equivalent code written using MaskedTensor.
24+
# In the end the code snippets are repeated without additional comments to show the difference in brevity.
25+
#
26+
# Preparation
27+
# -----------
28+
#
29+
30+
import torch
31+
import warnings
32+
33+
# Disable prototype warnings and such
34+
warnings.filterwarnings(action='ignore', category=UserWarning)
35+
36+
# Some hyperparameters
37+
eps = 1e-10
38+
clr = 0.1
39+
40+
i = torch.tensor([[0, 1, 1], [2, 0, 2]])
41+
v = torch.tensor([3, 4, 5], dtype=torch.float32)
42+
grad = torch.sparse_coo_tensor(i, v, [2, 4])
43+
44+
######################################################################
45+
# Simpler Code with MaskedTensor
46+
# ------------------------------
47+
#
48+
# Before we get too far in the weeds, let's introduce the problem a bit more concretely. We will be taking a look
49+
# into the `Adagrad (functional) <https://github.com/pytorch/pytorch/blob/6c2f235d368b697072699e5ca9485fd97d0b9bcc/torch/optim/_functional.py#L16-L51>`__
50+
# implementation in PyTorch with the ultimate goal of simplifying and more faithfully representing the masked approach.
51+
#
52+
# For reference, this is the regular, dense code path without masked gradients or sparsity:
53+
#
54+
# .. code-block:: python
55+
#
56+
# state_sum.addcmul_(grad, grad, value=1)
57+
# std = state_sum.sqrt().add_(eps)
58+
# param.addcdiv_(grad, std, value=-clr)
59+
#
60+
# The vanilla tensor implementation for sparse is:
61+
#
62+
# .. code-block:: python
63+
#
64+
# def _make_sparse(grad, grad_indices, values):
65+
# size = grad.size()
66+
# if grad_indices.numel() == 0 or values.numel() == 0:
67+
# return torch.empty_like(grad)
68+
# return torch.sparse_coo_tensor(grad_indices, values, size)
69+
#
70+
# grad = grad.coalesce() # the update is non-linear so indices must be unique
71+
# grad_indices = grad._indices()
72+
# grad_values = grad._values()
73+
#
74+
# state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2))) # a different _make_sparse per layout
75+
# std = state_sum.sparse_mask(grad)
76+
# std_values = std._values().sqrt_().add_(eps)
77+
# param.add_(_make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr)
78+
#
79+
# while :class:`MaskedTensor` minimizes the code to the snippet:
80+
#
81+
# .. code-block:: python
82+
#
83+
# state_sum2 = state_sum2 + masked_grad.pow(2).get_data()
84+
# std2 = masked_tensor(state_sum2.to_sparse(), mask)
85+
# std2 = std2.sqrt().add(eps)
86+
# param2 = param2.add((masked_grad / std2).get_data(), alpha=-clr)
87+
#
88+
# In this tutorial, we will go through each implementation line by line, but at first glance, we can notice
89+
# (1) how much shorter the MaskedTensor implementation is, and
90+
# (2) how it avoids conversions between dense and sparse tensors.
91+
#
92+
93+
######################################################################
94+
# Original Sparse Implementation
95+
# ------------------------------
96+
#
97+
# Now, let's break down the code with some inline comments:
98+
#
99+
100+
def _make_sparse(grad, grad_indices, values):
101+
size = grad.size()
102+
if grad_indices.numel() == 0 or values.numel() == 0:
103+
return torch.empty_like(grad)
104+
return torch.sparse_coo_tensor(grad_indices, values, size)
105+
106+
# We don't support sparse gradients
107+
param = torch.arange(8).reshape(2, 4).float()
108+
state_sum = torch.full_like(param, 0.5) # initial value for state sum
109+
110+
grad = grad.coalesce() # the update is non-linear so indices must be unique
111+
grad_indices = grad._indices()
112+
grad_values = grad._values()
113+
# pow(2) has the same semantics for both sparse and dense memory layouts since 0^2 is zero
114+
state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2)))
115+
116+
# We take care to make std sparse, even though state_sum clearly is not.
117+
# This means that we're only applying the gradient to parts of the state_sum
118+
# for which it is specified. This further drives the point home that the passed gradient is not sparse, but masked.
119+
# We currently dodge all these concerns using the private method `_values`.
120+
std = state_sum.sparse_mask(grad)
121+
std_values = std._values().sqrt_().add_(eps)
122+
123+
# Note here that we currently don't support div for sparse Tensors because zero / zero is not well defined,
124+
# so we're forced to perform `grad_values / std_values` outside the sparse semantic and then convert back to a
125+
# sparse tensor with `make_sparse`.
126+
# We'll later see that MaskedTensor will actually handle these operations for us as well as properly denote
127+
# undefined / undefined = undefined!
128+
param.add_(_make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr)
129+
130+
######################################################################
131+
# The third to last line -- `std = state_sum.sparse_mask(grad)` -- is where we have a very important divergence.
132+
#
133+
# The addition of eps should technically be applied to all values but instead is only applied to specified values.
134+
# Here we're using sparsity as a semantic extension and to enforce a certain pattern of defined and undefined values.
135+
# If parts of the values of the gradient are zero, they are still included if materialized even though they
136+
# could be compressed by other sparse storage layouts. This is theoretically quite brittle!
137+
# That said, one could argue that eps is always very small, so it might not matter so much in practice.
138+
#
139+
# Moreover, an implementation `add_` for sparsity as a storage layout and compression scheme
140+
# should cause densification, but we force it not to for performance.
141+
# For this one-off case it is fine.. until we want to introduce new compression scheme, such as
142+
# `CSC <https://pytorch.org/docs/master/sparse.html#sparse-csc-docs>`__,
143+
# `BSR <https://pytorch.org/docs/master/sparse.html#sparse-bsr-docs>`__,
144+
# or `BSC <https://pytorch.org/docs/master/sparse.html#sparse-bsc-docs>`__.
145+
# We will then need to introduce separate Tensor types for each and write variations for gradients compressed
146+
# using different storage formats, which is inconvenient and not quite scalable nor clean.
147+
#
148+
# MaskedTensor Sparse Implementation
149+
# ----------------------------------
150+
#
151+
# We've been conflating sparsity as an optimization with sparsity as a semantic extension to PyTorch.
152+
# MaskedTensor proposes to disentangle the sparsity optimization from the semantic extension; for example,
153+
# currently we can't have dense semantics with sparse storage or masked semantics with dense storage.
154+
# MaskedTensor enables these ideas by purposefully separating the storage from the semantics.
155+
#
156+
# Consider the above example using a masked gradient:
157+
#
158+
159+
# Let's now import MaskedTensor!
160+
from torch.masked import masked_tensor
161+
162+
# Create an entirely new set of parameters to avoid errors
163+
param2 = torch.arange(8).reshape(2, 4).float()
164+
state_sum2 = torch.full_like(param, 0.5) # initial value for state sum
165+
166+
mask = (grad.to_dense() != 0).to_sparse()
167+
masked_grad = masked_tensor(grad, mask)
168+
169+
state_sum2 = state_sum2 + masked_grad.pow(2).get_data()
170+
std2 = masked_tensor(state_sum2.to_sparse(), mask)
171+
172+
# We can add support for in-place operations later. Notice how this doesn't
173+
# need to access any storage internals and is in general a lot shorter
174+
std2 = std2.sqrt().add(eps)
175+
176+
param2 = param2.add((masked_grad / std2).get_data(), alpha=-clr)
177+
178+
######################################################################
179+
# Note that the implementations look quite similar, but the MaskedTensor implementation is shorter and simpler.
180+
# In particular, much of the boilerplate code around ``_make_sparse``
181+
# (and needing to have a separate implementation per layout) is handled for the user with :class:`MaskedTensor`.
182+
#
183+
# At this point, let's print both this version and original version for easier comparison:
184+
#
185+
186+
print("state_sum:\n", state_sum)
187+
print("state_sum2:\n", state_sum2)
188+
189+
######################################################################
190+
#
191+
192+
print("std:\n", std)
193+
print("std2:\n", std2)
194+
195+
######################################################################
196+
#
197+
198+
print("param:\n", param)
199+
print("param2:\n", param2)
200+
201+
######################################################################
202+
# Conclusion
203+
# ----------
204+
#
205+
# In this tutorial, we've discussed how native masked semantics can enable a cleaner developer experience for
206+
# Adagrad's existing implementation in PyTorch, which used sparsity as a proxy for writing masked semantics.
207+
# But more importantly, allowing masked semantics to be a first class citizen through MaskedTensor
208+
# removes the reliance on sparsity or unreliable hacks to mimic masking, thereby allowing for proper independence
209+
# and development, while enabling sparse semantics, such as this one.
210+
#
211+
# Further Reading
212+
# ---------------
213+
#
214+
# To continue learning more, you can find our final review (for now) on
215+
# `MaskedTensor Advanced Semantics <https://pytorch.org/tutorials/prototype/maskedtensor_advanced_semantics.html>`__
216+
# to see some of the differences in design decisions between :class:`MaskedTensor` and NumPy's MaskedArray, as well
217+
# as reduction semantics.
218+
#

prototype_source/prototype_index.rst

+8
Original file line numberDiff line numberDiff line change
@@ -156,6 +156,13 @@ Prototype features are not available as part of binary distributions like PyPI o
156156
:link: ../prototype/maskedtensor_advanced_semantics.html
157157
:tags: MaskedTensor
158158

159+
.. customcarditem::
160+
:header: MaskedTensor: Simplifying Adagrad Sparse Semantics
161+
:card_description: See a showcase on how masked tensors can enable sparse semantics and provide for a cleaner dev experience
162+
:image: ../_static/img/thumbnails/cropped/generic-pytorch-logo.png
163+
:link: ../prototype/maskedtensor_adagrad.html
164+
:tags: MaskedTensor
165+
159166
.. End of tutorial card section
160167
161168
.. raw:: html
@@ -189,3 +196,4 @@ Prototype features are not available as part of binary distributions like PyPI o
189196
prototype/nestedtensor.html
190197
prototype/maskedtensor_overview.html
191198
prototype/maskedtensor_advanced_semantics.html
199+
prototype/maskedtensor_adagrad.html

0 commit comments

Comments
 (0)