-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathhub_mixin.py
144 lines (113 loc) · 5.06 KB
/
hub_mixin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import json
from pathlib import Path
from typing import Optional, Union
from functools import wraps
from huggingface_hub import PyTorchModelHubMixin, ModelCard, ModelCardData, hf_hub_download
MODEL_CARD = """
---
{{ card_data }}
---
# {{ model_name }} Model Card
Table of Contents:
- [Load trained model](#load-trained-model)
- [Model init parameters](#model-init-parameters)
- [Model metrics](#model-metrics)
- [Dataset](#dataset)
## Load trained model
```python
import segmentation_models_pytorch as smp
model = smp.{{ model_name }}.from_pretrained("{{ save_directory | default("<save-directory-or-repo>", true)}}")
```
## Model init parameters
```python
model_init_params = {{ model_parameters }}
```
## Model metrics
{{ metrics | default("[More Information Needed]", true) }}
## Dataset
Dataset name: {{ dataset | default("[More Information Needed]", true) }}
## More Information
- Library: {{ repo_url | default("[More Information Needed]", true) }}
- Docs: {{ docs_url | default("[More Information Needed]", true) }}
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
"""
def _format_parameters(parameters: dict):
params = {k: v for k, v in parameters.items() if not k.startswith("_")}
params = [f'"{k}": {v}' if not isinstance(v, str) else f'"{k}": "{v}"' for k, v in params.items()]
params = ",\n".join([f" {param}" for param in params])
params = "{\n" + f"{params}" + "\n}"
return params
class SMPHubMixin(PyTorchModelHubMixin):
def generate_model_card(self, *args, **kwargs) -> ModelCard:
model_parameters_json = _format_parameters(self._hub_mixin_config)
directory = self._save_directory if hasattr(self, "_save_directory") else None
repo_id = self._repo_id if hasattr(self, "_repo_id") else None
repo_or_directory = repo_id if repo_id is not None else directory
metrics = self._metrics if hasattr(self, "_metrics") else None
dataset = self._dataset if hasattr(self, "_dataset") else None
if metrics is not None:
metrics = json.dumps(metrics, indent=4)
metrics = f"```json\n{metrics}\n```"
model_card_data = ModelCardData(
languages=["python"],
library_name="segmentation-models-pytorch",
license="mit",
tags=["semantic-segmentation", "pytorch", "segmentation-models-pytorch"],
pipeline_tag="image-segmentation",
)
model_card = ModelCard.from_template(
card_data=model_card_data,
template_str=MODEL_CARD,
repo_url="https://github.com/qubvel/segmentation_models.pytorch",
docs_url="https://smp.readthedocs.io/en/latest/",
model_parameters=model_parameters_json,
save_directory=repo_or_directory,
model_name=self.__class__.__name__,
metrics=metrics,
dataset=dataset,
)
return model_card
def _set_attrs_from_kwargs(self, attrs, kwargs):
for attr in attrs:
if attr in kwargs:
setattr(self, f"_{attr}", kwargs.pop(attr))
def _del_attrs(self, attrs):
for attr in attrs:
if hasattr(self, f"_{attr}"):
delattr(self, f"_{attr}")
@wraps(PyTorchModelHubMixin.save_pretrained)
def save_pretrained(self, save_directory: Union[str, Path], *args, **kwargs) -> Optional[str]:
# set additional attributes to be used in generate_model_card
self._save_directory = save_directory
self._set_attrs_from_kwargs(["metrics", "dataset"], kwargs)
# set additional attribute to be used in from_pretrained
self._hub_mixin_config["_model_class"] = self.__class__.__name__
try:
# call the original save_pretrained
result = super().save_pretrained(save_directory, *args, **kwargs)
finally:
# delete the additional attributes
self._del_attrs(["save_directory", "metrics", "dataset"])
self._hub_mixin_config.pop("_model_class")
return result
@wraps(PyTorchModelHubMixin.push_to_hub)
def push_to_hub(self, repo_id: str, *args, **kwargs):
self._repo_id = repo_id
self._set_attrs_from_kwargs(["metrics", "dataset"], kwargs)
result = super().push_to_hub(repo_id, *args, **kwargs)
self._del_attrs(["repo_id", "metrics", "dataset"])
return result
@property
def config(self):
return self._hub_mixin_config
@wraps(PyTorchModelHubMixin.from_pretrained)
def from_pretrained(pretrained_model_name_or_path: str, *args, **kwargs):
config_path = hf_hub_download(
pretrained_model_name_or_path, filename="config.json", revision=kwargs.get("revision", None)
)
with open(config_path, "r") as f:
config = json.load(f)
model_class_name = config.pop("_model_class")
import segmentation_models_pytorch as smp
model_class = getattr(smp, model_class_name)
return model_class.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)