-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathinference.py
127 lines (101 loc) · 3.13 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import sys
import json
import numpy as np
import logging
import argparse
import os
import time
import numpy as np
import glob
import torch
import torch.nn as nn
import torch.optim as optim
from tensorboardX import SummaryWriter
import src.evaluation as evaluation
from src.cuda import CUDA
import src.data as data
import src.models as models
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
help="path to json config.",
required=True
)
parser.add_argument(
"--checkpoint",
help="path to model checkpoint",
required=True
)
args = parser.parse_args()
config = json.load(open(args.config, 'r'))
working_dir = config['data']['working_dir']
if not os.path.exists(working_dir):
os.makedirs(working_dir)
config_path = os.path.join(working_dir, 'config.json')
if not os.path.exists(config_path):
with open(config_path, 'w') as f:
json.dump(config, f)
# set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
filename='%s/train_log' % working_dir,
)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
logging.info('Reading data ...')
src, tgt = data.read_nmt_data(
src=config['data']['src'],
config=config,
tgt=config['data']['tgt'],
attribute_vocab=config['data']['attribute_vocab'],
ngram_attributes=config['data']['ngram_attributes']
)
src_test, tgt_test = data.read_nmt_data(
src=config['data']['src_test'],
config=config,
tgt=config['data']['tgt_test'],
attribute_vocab=config['data']['attribute_vocab'],
ngram_attributes=config['data']['ngram_attributes'],
train_src=src,
train_tgt=tgt
)
logging.info('...done!')
src_vocab_size = len(src['tok2id'])
tgt_vocab_size = len(tgt['tok2id'])
torch.manual_seed(config['training']['random_seed'])
np.random.seed(config['training']['random_seed'])
model = models.SeqModel(
src_vocab_size=src_vocab_size,
tgt_vocab_size=tgt_vocab_size,
pad_id_src=src['tok2id']['<pad>'],
pad_id_tgt=tgt['tok2id']['<pad>'],
config=config
)
logging.info('MODEL HAS %s params' % model.count_params())
model, start_epoch = models.attempt_load_model(
model=model,
checkpoint_path=args.checkpoint)
if CUDA:
model = model.cuda()
start = time.time()
model.eval()
dev_loss = evaluation.evaluate_lpp(
model, src_test, tgt_test, config)
bleu, edit_distance, inputs, preds, golds, auxs = evaluation.inference_metrics(
model, src_test, tgt_test, config)
with open(working_dir + '/auxs', 'w') as f:
f.write('\n'.join(auxs) + '\n')
with open(working_dir + '/inputs', 'w') as f:
f.write('\n'.join(inputs) + '\n')
with open(working_dir + '/preds', 'w') as f:
f.write('\n'.join(preds) + '\n')
with open(working_dir + '/golds', 'w') as f:
f.write('\n'.join(golds) + '\n')
logging.info('INFERENCE DONE. Outputs written to %s' % (working_dir + "/preds"))
logging.info('\tEdit distance: ' + str(edit_distance))
logging.info('\tBLEU: ' + str(bleu))
logging.info('\tLPP: ' + str(dev_loss))