Skip to content

Commit f2d829c

Browse files
authored
Rollup merge of #68914 - nnethercote:speed-up-SipHasher128, r=michaelwoerister
Speed up `SipHasher128`. The current code in `SipHasher128::short_write` is inefficient. It uses `u8to64_le` (which is complex and slow) to extract just the right number of bytes of the input into a u64 and pad the result with zeroes. It then left-shifts that value in order to bitwise-OR it with `self.tail`. For example, imagine we have a u32 input `0xIIHH_GGFF` and only need three bytes to fill up `self.tail`. The current code uses `u8to64_le` to construct `0x0000_0000_00HH_GGFF`, which is just `0xIIHH_GGFF` with the `0xII` removed and zero-extended to a u64. The code then left-shifts that value by five bytes -- discarding the `0x00` byte that replaced the `0xII` byte! -- to give `0xHHGG_FF00_0000_0000`. It then then ORs that value with `self.tail`. There's a much simpler way to do it: zero-extend to u64 first, then left shift. E.g. `0xIIHH_GGFF` is zero-extended to `0x0000_0000_IIHH_GGFF`, and then left-shifted to `0xHHGG_FF00_0000_0000`. We don't have to take time to exclude the unneeded `0xII` byte, because it just gets shifted out anyway! It also avoids multiple occurrences of `unsafe`. There's a similar story with the setting of `self.tail` at the method's end. The current code uses `u8to64_le` to extract the remaining part of the input, but the same effect can be achieved more quickly with a right shift on the zero-extended input. This commit changes `SipHasher128` to use the simpler shift-based approach. The code is also smaller, which means that `short_write` is now inlined where previously it wasn't, which makes things faster again. This gives big speed-ups for all incremental builds, especially "baseline" incremental builds. r? @michaelwoerister
2 parents 79ebf53 + 9aea154 commit f2d829c

File tree

1 file changed

+84
-80
lines changed

1 file changed

+84
-80
lines changed

src/librustc_data_structures/sip128.rs

+84-80
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@ use std::cmp;
44
use std::hash::Hasher;
55
use std::mem;
66
use std::ptr;
7-
use std::slice;
87

98
#[cfg(test)]
109
mod tests;
@@ -52,46 +51,17 @@ macro_rules! compress {
5251
}};
5352
}
5453

55-
/// Loads an integer of the desired type from a byte stream, in LE order. Uses
56-
/// `copy_nonoverlapping` to let the compiler generate the most efficient way
57-
/// to load it from a possibly unaligned address.
58-
///
59-
/// Unsafe because: unchecked indexing at i..i+size_of(int_ty)
60-
macro_rules! load_int_le {
61-
($buf:expr, $i:expr, $int_ty:ident) => {{
62-
debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len());
63-
let mut data = 0 as $int_ty;
64-
ptr::copy_nonoverlapping(
65-
$buf.get_unchecked($i),
66-
&mut data as *mut _ as *mut u8,
67-
mem::size_of::<$int_ty>(),
68-
);
69-
data.to_le()
70-
}};
71-
}
72-
73-
/// Loads an u64 using up to 7 bytes of a byte slice.
74-
///
75-
/// Unsafe because: unchecked indexing at start..start+len
54+
/// Loads up to 8 bytes from a byte-slice into a little-endian u64.
7655
#[inline]
77-
unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
78-
debug_assert!(len < 8);
79-
let mut i = 0; // current byte index (from LSB) in the output u64
80-
let mut out = 0;
81-
if i + 3 < len {
82-
out = u64::from(load_int_le!(buf, start + i, u32));
83-
i += 4;
84-
}
85-
if i + 1 < len {
86-
out |= u64::from(load_int_le!(buf, start + i, u16)) << (i * 8);
87-
i += 2
88-
}
89-
if i < len {
90-
out |= u64::from(*buf.get_unchecked(start + i)) << (i * 8);
91-
i += 1;
56+
fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
57+
assert!(len <= 8 && start + len <= buf.len());
58+
59+
let mut out = 0u64;
60+
unsafe {
61+
let out_ptr = &mut out as *mut _ as *mut u8;
62+
ptr::copy_nonoverlapping(buf.as_ptr().offset(start as isize), out_ptr, len);
9263
}
93-
debug_assert_eq!(i, len);
94-
out
64+
out.to_le()
9565
}
9666

9767
impl SipHasher128 {
@@ -122,42 +92,76 @@ impl SipHasher128 {
12292
self.state.v1 ^= 0xee;
12393
}
12494

125-
// Specialized write function that is only valid for buffers with len <= 8.
126-
// It's used to force inlining of write_u8 and write_usize, those would normally be inlined
127-
// except for composite types (that includes slices and str hashing because of delimiter).
128-
// Without this extra push the compiler is very reluctant to inline delimiter writes,
129-
// degrading performance substantially for the most common use cases.
95+
// A specialized write function for values with size <= 8.
96+
//
97+
// The hashing of multi-byte integers depends on endianness. E.g.:
98+
// - little-endian: `write_u32(0xDDCCBBAA)` == `write([0xAA, 0xBB, 0xCC, 0xDD])`
99+
// - big-endian: `write_u32(0xDDCCBBAA)` == `write([0xDD, 0xCC, 0xBB, 0xAA])`
100+
//
101+
// This function does the right thing for little-endian hardware. On
102+
// big-endian hardware `x` must be byte-swapped first to give the right
103+
// behaviour. After any byte-swapping, the input must be zero-extended to
104+
// 64-bits. The caller is responsible for the byte-swapping and
105+
// zero-extension.
130106
#[inline]
131-
fn short_write(&mut self, msg: &[u8]) {
132-
debug_assert!(msg.len() <= 8);
133-
let length = msg.len();
134-
self.length += length;
107+
fn short_write<T>(&mut self, _x: T, x: u64) {
108+
let size = mem::size_of::<T>();
109+
self.length += size;
110+
111+
// The original number must be zero-extended, not sign-extended.
112+
debug_assert!(if size < 8 { x >> (8 * size) == 0 } else { true });
135113

114+
// The number of bytes needed to fill `self.tail`.
136115
let needed = 8 - self.ntail;
137-
let fill = cmp::min(length, needed);
138-
if fill == 8 {
139-
self.tail = unsafe { load_int_le!(msg, 0, u64) };
140-
} else {
141-
self.tail |= unsafe { u8to64_le(msg, 0, fill) } << (8 * self.ntail);
142-
if length < needed {
143-
self.ntail += length;
144-
return;
145-
}
116+
117+
// SipHash parses the input stream as 8-byte little-endian integers.
118+
// Inputs are put into `self.tail` until 8 bytes of data have been
119+
// collected, and then that word is processed.
120+
//
121+
// For example, imagine that `self.tail` is 0x0000_00EE_DDCC_BBAA,
122+
// `self.ntail` is 5 (because 5 bytes have been put into `self.tail`),
123+
// and `needed` is therefore 3.
124+
//
125+
// - Scenario 1, `self.write_u8(0xFF)`: we have already zero-extended
126+
// the input to 0x0000_0000_0000_00FF. We now left-shift it five
127+
// bytes, giving 0x0000_FF00_0000_0000. We then bitwise-OR that value
128+
// into `self.tail`, resulting in 0x0000_FFEE_DDCC_BBAA.
129+
// (Zero-extension of the original input is critical in this scenario
130+
// because we don't want the high two bytes of `self.tail` to be
131+
// touched by the bitwise-OR.) `self.tail` is not yet full, so we
132+
// return early, after updating `self.ntail` to 6.
133+
//
134+
// - Scenario 2, `self.write_u32(0xIIHH_GGFF)`: we have already
135+
// zero-extended the input to 0x0000_0000_IIHH_GGFF. We now
136+
// left-shift it five bytes, giving 0xHHGG_FF00_0000_0000. We then
137+
// bitwise-OR that value into `self.tail`, resulting in
138+
// 0xHHGG_FFEE_DDCC_BBAA. `self.tail` is now full, and we can use it
139+
// to update `self.state`. (As mentioned above, this assumes a
140+
// little-endian machine; on a big-endian machine we would have
141+
// byte-swapped 0xIIHH_GGFF in the caller, giving 0xFFGG_HHII, and we
142+
// would then end up bitwise-ORing 0xGGHH_II00_0000_0000 into
143+
// `self.tail`).
144+
//
145+
self.tail |= x << (8 * self.ntail);
146+
if size < needed {
147+
self.ntail += size;
148+
return;
146149
}
150+
151+
// `self.tail` is full, process it.
147152
self.state.v3 ^= self.tail;
148153
Sip24Rounds::c_rounds(&mut self.state);
149154
self.state.v0 ^= self.tail;
150155

151-
// Buffered tail is now flushed, process new input.
152-
self.ntail = length - needed;
153-
self.tail = unsafe { u8to64_le(msg, needed, self.ntail) };
154-
}
155-
156-
#[inline(always)]
157-
fn short_write_gen<T>(&mut self, x: T) {
158-
let bytes =
159-
unsafe { slice::from_raw_parts(&x as *const T as *const u8, mem::size_of::<T>()) };
160-
self.short_write(bytes);
156+
// Continuing scenario 2: we have one byte left over from the input. We
157+
// set `self.ntail` to 1 and `self.tail` to `0x0000_0000_IIHH_GGFF >>
158+
// 8*3`, which is 0x0000_0000_0000_00II. (Or on a big-endian machine
159+
// the prior byte-swapping would leave us with 0x0000_0000_0000_00FF.)
160+
//
161+
// The `if` is needed to avoid shifting by 64 bits, which Rust
162+
// complains about.
163+
self.ntail = size - needed;
164+
self.tail = if needed < 8 { x >> (8 * needed) } else { 0 };
161165
}
162166

163167
#[inline]
@@ -182,52 +186,52 @@ impl SipHasher128 {
182186
impl Hasher for SipHasher128 {
183187
#[inline]
184188
fn write_u8(&mut self, i: u8) {
185-
self.short_write_gen(i);
189+
self.short_write(i, i as u64);
186190
}
187191

188192
#[inline]
189193
fn write_u16(&mut self, i: u16) {
190-
self.short_write_gen(i);
194+
self.short_write(i, i.to_le() as u64);
191195
}
192196

193197
#[inline]
194198
fn write_u32(&mut self, i: u32) {
195-
self.short_write_gen(i);
199+
self.short_write(i, i.to_le() as u64);
196200
}
197201

198202
#[inline]
199203
fn write_u64(&mut self, i: u64) {
200-
self.short_write_gen(i);
204+
self.short_write(i, i.to_le() as u64);
201205
}
202206

203207
#[inline]
204208
fn write_usize(&mut self, i: usize) {
205-
self.short_write_gen(i);
209+
self.short_write(i, i.to_le() as u64);
206210
}
207211

208212
#[inline]
209213
fn write_i8(&mut self, i: i8) {
210-
self.short_write_gen(i);
214+
self.short_write(i, i as u8 as u64);
211215
}
212216

213217
#[inline]
214218
fn write_i16(&mut self, i: i16) {
215-
self.short_write_gen(i);
219+
self.short_write(i, (i as u16).to_le() as u64);
216220
}
217221

218222
#[inline]
219223
fn write_i32(&mut self, i: i32) {
220-
self.short_write_gen(i);
224+
self.short_write(i, (i as u32).to_le() as u64);
221225
}
222226

223227
#[inline]
224228
fn write_i64(&mut self, i: i64) {
225-
self.short_write_gen(i);
229+
self.short_write(i, (i as u64).to_le() as u64);
226230
}
227231

228232
#[inline]
229233
fn write_isize(&mut self, i: isize) {
230-
self.short_write_gen(i);
234+
self.short_write(i, (i as usize).to_le() as u64);
231235
}
232236

233237
#[inline]
@@ -239,7 +243,7 @@ impl Hasher for SipHasher128 {
239243

240244
if self.ntail != 0 {
241245
needed = 8 - self.ntail;
242-
self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail);
246+
self.tail |= u8to64_le(msg, 0, cmp::min(length, needed)) << (8 * self.ntail);
243247
if length < needed {
244248
self.ntail += length;
245249
return;
@@ -257,7 +261,7 @@ impl Hasher for SipHasher128 {
257261

258262
let mut i = needed;
259263
while i < len - left {
260-
let mi = unsafe { load_int_le!(msg, i, u64) };
264+
let mi = u8to64_le(msg, i, 8);
261265

262266
self.state.v3 ^= mi;
263267
Sip24Rounds::c_rounds(&mut self.state);
@@ -266,7 +270,7 @@ impl Hasher for SipHasher128 {
266270
i += 8;
267271
}
268272

269-
self.tail = unsafe { u8to64_le(msg, i, left) };
273+
self.tail = u8to64_le(msg, i, left);
270274
self.ntail = left;
271275
}
272276

0 commit comments

Comments
 (0)