|
| 1 | +//! Benchmark comparing the current GCD implemtation against an older one. |
| 2 | +
|
| 3 | +#![feature(test)] |
| 4 | + |
| 5 | +extern crate num_integer; |
| 6 | +extern crate num_traits; |
| 7 | +extern crate test; |
| 8 | + |
| 9 | +use num_integer::Integer; |
| 10 | +use num_traits::{AsPrimitive, Bounded, Signed}; |
| 11 | +use test::{black_box, Bencher}; |
| 12 | + |
| 13 | +trait GcdOld: Integer { |
| 14 | + fn gcd_old(&self, other: &Self) -> Self; |
| 15 | +} |
| 16 | + |
| 17 | +macro_rules! impl_gcd_old_for_isize { |
| 18 | + ($T:ty) => { |
| 19 | + impl GcdOld for $T { |
| 20 | + /// Calculates the Greatest Common Divisor (GCD) of the number and |
| 21 | + /// `other`. The result is always positive. |
| 22 | + #[inline] |
| 23 | + fn gcd_old(&self, other: &Self) -> Self { |
| 24 | + // Use Stein's algorithm |
| 25 | + let mut m = *self; |
| 26 | + let mut n = *other; |
| 27 | + if m == 0 || n == 0 { |
| 28 | + return (m | n).abs(); |
| 29 | + } |
| 30 | + |
| 31 | + // find common factors of 2 |
| 32 | + let shift = (m | n).trailing_zeros(); |
| 33 | + |
| 34 | + // The algorithm needs positive numbers, but the minimum value |
| 35 | + // can't be represented as a positive one. |
| 36 | + // It's also a power of two, so the gcd can be |
| 37 | + // calculated by bitshifting in that case |
| 38 | + |
| 39 | + // Assuming two's complement, the number created by the shift |
| 40 | + // is positive for all numbers except gcd = abs(min value) |
| 41 | + // The call to .abs() causes a panic in debug mode |
| 42 | + if m == Self::min_value() || n == Self::min_value() { |
| 43 | + return (1 << shift).abs(); |
| 44 | + } |
| 45 | + |
| 46 | + // guaranteed to be positive now, rest like unsigned algorithm |
| 47 | + m = m.abs(); |
| 48 | + n = n.abs(); |
| 49 | + |
| 50 | + // divide n and m by 2 until odd |
| 51 | + // m inside loop |
| 52 | + n >>= n.trailing_zeros(); |
| 53 | + |
| 54 | + while m != 0 { |
| 55 | + m >>= m.trailing_zeros(); |
| 56 | + if n > m { |
| 57 | + std::mem::swap(&mut n, &mut m) |
| 58 | + } |
| 59 | + m -= n; |
| 60 | + } |
| 61 | + |
| 62 | + n << shift |
| 63 | + } |
| 64 | + } |
| 65 | + }; |
| 66 | +} |
| 67 | + |
| 68 | +impl_gcd_old_for_isize!(i8); |
| 69 | +impl_gcd_old_for_isize!(i16); |
| 70 | +impl_gcd_old_for_isize!(i32); |
| 71 | +impl_gcd_old_for_isize!(i64); |
| 72 | +impl_gcd_old_for_isize!(isize); |
| 73 | +impl_gcd_old_for_isize!(i128); |
| 74 | + |
| 75 | +macro_rules! impl_gcd_old_for_usize { |
| 76 | + ($T:ty) => { |
| 77 | + impl GcdOld for $T { |
| 78 | + /// Calculates the Greatest Common Divisor (GCD) of the number and |
| 79 | + /// `other`. The result is always positive. |
| 80 | + #[inline] |
| 81 | + fn gcd_old(&self, other: &Self) -> Self { |
| 82 | + // Use Stein's algorithm |
| 83 | + let mut m = *self; |
| 84 | + let mut n = *other; |
| 85 | + if m == 0 || n == 0 { |
| 86 | + return m | n; |
| 87 | + } |
| 88 | + |
| 89 | + // find common factors of 2 |
| 90 | + let shift = (m | n).trailing_zeros(); |
| 91 | + |
| 92 | + // divide n and m by 2 until odd |
| 93 | + // m inside loop |
| 94 | + n >>= n.trailing_zeros(); |
| 95 | + |
| 96 | + while m != 0 { |
| 97 | + m >>= m.trailing_zeros(); |
| 98 | + if n > m { |
| 99 | + std::mem::swap(&mut n, &mut m) |
| 100 | + } |
| 101 | + m -= n; |
| 102 | + } |
| 103 | + |
| 104 | + n << shift |
| 105 | + } |
| 106 | + } |
| 107 | + }; |
| 108 | +} |
| 109 | + |
| 110 | +impl_gcd_old_for_usize!(u8); |
| 111 | +impl_gcd_old_for_usize!(u16); |
| 112 | +impl_gcd_old_for_usize!(u32); |
| 113 | +impl_gcd_old_for_usize!(u64); |
| 114 | +impl_gcd_old_for_usize!(usize); |
| 115 | +impl_gcd_old_for_usize!(u128); |
| 116 | + |
| 117 | +/// Return an iterator that yields all Fibonacci numbers fitting into a u128. |
| 118 | +fn fibonacci() -> impl Iterator<Item=u128> { |
| 119 | + (0..185).scan((0, 1), |&mut (ref mut a, ref mut b), _| { |
| 120 | + let tmp = *a; |
| 121 | + *a = *b; |
| 122 | + *b += tmp; |
| 123 | + Some(*b) |
| 124 | + }) |
| 125 | +} |
| 126 | + |
| 127 | +fn run_bench<T: Integer + Bounded + Copy + 'static>(b: &mut Bencher, gcd: fn(&T, &T) -> T) |
| 128 | +where |
| 129 | + T: AsPrimitive<u128>, |
| 130 | + u128: AsPrimitive<T>, |
| 131 | +{ |
| 132 | + let max_value: u128 = T::max_value().as_(); |
| 133 | + let pairs: Vec<(T, T)> = fibonacci() |
| 134 | + .collect::<Vec<_>>() |
| 135 | + .windows(2) |
| 136 | + .filter(|&pair| pair[0] <= max_value && pair[1] <= max_value) |
| 137 | + .map(|pair| (pair[0].as_(), pair[1].as_())) |
| 138 | + .collect(); |
| 139 | + b.iter(|| { |
| 140 | + for &(ref m, ref n) in &pairs { |
| 141 | + black_box(gcd(m, n)); |
| 142 | + } |
| 143 | + }); |
| 144 | +} |
| 145 | + |
| 146 | +macro_rules! bench_gcd { |
| 147 | + ($T:ident) => { |
| 148 | + mod $T { |
| 149 | + use crate::{run_bench, GcdOld}; |
| 150 | + use num_integer::Integer; |
| 151 | + use test::Bencher; |
| 152 | + |
| 153 | + #[bench] |
| 154 | + fn bench_gcd(b: &mut Bencher) { |
| 155 | + run_bench(b, $T::gcd); |
| 156 | + } |
| 157 | + |
| 158 | + #[bench] |
| 159 | + fn bench_gcd_old(b: &mut Bencher) { |
| 160 | + run_bench(b, $T::gcd_old); |
| 161 | + } |
| 162 | + } |
| 163 | + }; |
| 164 | +} |
| 165 | + |
| 166 | +bench_gcd!(u8); |
| 167 | +bench_gcd!(u16); |
| 168 | +bench_gcd!(u32); |
| 169 | +bench_gcd!(u64); |
| 170 | +bench_gcd!(u128); |
| 171 | + |
| 172 | +bench_gcd!(i8); |
| 173 | +bench_gcd!(i16); |
| 174 | +bench_gcd!(i32); |
| 175 | +bench_gcd!(i64); |
| 176 | +bench_gcd!(i128); |
0 commit comments