|
| 1 | +.. _slep_018: |
| 2 | + |
| 3 | +======================================================= |
| 4 | +SLEP018: Pandas Output for Transformers with set_output |
| 5 | +======================================================= |
| 6 | + |
| 7 | +:Author: Thomas J. Fan |
| 8 | +:Status: Draft |
| 9 | +:Type: Standards Track |
| 10 | +:Created: 2022-06-22 |
| 11 | + |
| 12 | +Abstract |
| 13 | +-------- |
| 14 | + |
| 15 | +This SLEP proposes a ``set_output`` method to configure the output data container of |
| 16 | +scikit-learn transformers. |
| 17 | + |
| 18 | +Detailed description |
| 19 | +-------------------- |
| 20 | + |
| 21 | +Currently, scikit-learn transformers return NumPy ndarrays or SciPy sparse |
| 22 | +matrices. This SLEP proposes adding a ``set_output`` method to configure a |
| 23 | +transformer to output pandas DataFrames:: |
| 24 | + |
| 25 | + scalar = StandardScalar().set_output(transform="pandas") |
| 26 | + scalar.fit(X_df) |
| 27 | + |
| 28 | + # X_trans_df is a pandas DataFrame |
| 29 | + X_trans_df = scalar.transform(X_df) |
| 30 | + |
| 31 | +The index of the output DataFrame must match the index of the input. If the |
| 32 | +transformer does not support ``transform="pandas"``, then it must raise a |
| 33 | +``ValueError`` stating that it does not support the feature. |
| 34 | + |
| 35 | +This SLEP's only focus is dense data for ``set_output``. If a transformer returns |
| 36 | +sparse data, e.g. `OneHotEncoder(sparse=True), then ``transform`` will raise a |
| 37 | +``ValueError`` if ``set_output(transform="pandas")``. Dealing with sparse output |
| 38 | +might be the scope of another future SLEP. |
| 39 | + |
| 40 | +For a pipeline, calling ``set_output`` on the pipeline will configure all steps |
| 41 | +in the pipeline:: |
| 42 | + |
| 43 | + num_prep = make_pipeline(SimpleImputer(), StandardScalar(), PCA()) |
| 44 | + num_preprocessor.set_output(transform="pandas") |
| 45 | + |
| 46 | + # X_trans_df is a pandas DataFrame |
| 47 | + X_trans_df = num_preprocessor.fit_transform(X_df) |
| 48 | + |
| 49 | + # X_trans_df is again a pandas DataFrame |
| 50 | + X_trans_df = num_preprocessor[0].transform(X_df) |
| 51 | + |
| 52 | +Meta-estimators that support ``set_output`` are required to configure all inner |
| 53 | +transformer by calling ``set_output``. Specifically all fitted and non-fitted |
| 54 | +inner transformers must be configured with ``set_output``. This enables |
| 55 | +``transform``'s output to be a DataFrame before and after the meta-estimator is |
| 56 | +fitted. If an inner transformer does not define ``set_output``, then an error is |
| 57 | +raised. |
| 58 | + |
| 59 | + |
| 60 | +Global Configuration |
| 61 | +.................... |
| 62 | + |
| 63 | +For ease of use, this SLEP proposes a global configuration flag that sets the output for all |
| 64 | +transformers:: |
| 65 | + |
| 66 | + import sklearn |
| 67 | + sklearn.set_config(transform_output="pandas") |
| 68 | + |
| 69 | +The global default configuration is ``"default"`` where the transformer |
| 70 | +determines the output container. |
| 71 | + |
| 72 | +The configuration can also be set locally using the ``config_context`` context |
| 73 | +manager: |
| 74 | + |
| 75 | + from sklearn import config_context |
| 76 | + with config_context(transform_output="pandas"): |
| 77 | + num_prep = make_pipeline(SimpleImputer(), StandardScalar(), PCA()) |
| 78 | + num_preprocessor.fit_transform(X_df) |
| 79 | + |
| 80 | +The following specifies the precedence levels for the three ways to configure |
| 81 | +the output container: |
| 82 | + |
| 83 | +1. Locally configure a transformer: ``transformer.set_output`` |
| 84 | +2. Context manager: ``config_context`` |
| 85 | +3. Global configuration: ``set_config`` |
| 86 | + |
| 87 | +Implementation |
| 88 | +-------------- |
| 89 | + |
| 90 | +A possible implementation of this SLEP is worked out in :pr:`23734`. |
| 91 | + |
| 92 | +Backward compatibility |
| 93 | +---------------------- |
| 94 | + |
| 95 | +There are no backward compatibility concerns, because the ``set_output`` method |
| 96 | +is a new API. Third party transformers can opt-in to the API by defining |
| 97 | +``set_output``. |
| 98 | + |
| 99 | +Alternatives |
| 100 | +------------ |
| 101 | + |
| 102 | +Alternatives to this SLEP includes: |
| 103 | + |
| 104 | +1. `SLEP014 <https://github.com/scikit-learn/enhancement_proposals/pull/37>`__ |
| 105 | + proposes that if the input is a DataFrame than the output is a DataFrame. |
| 106 | +2. Prototype `#20100 |
| 107 | + <https://github.com/scikit-learn/scikit-learn/pull/20100>`__ showcases |
| 108 | + ``array_out="pandas"`` in `transform`. This API is limited because does not |
| 109 | + directly support fitting on a pipeline where the steps requires data frames |
| 110 | + input. |
| 111 | + |
| 112 | +Discussion |
| 113 | +---------- |
| 114 | + |
| 115 | +A list of issues discussing Pandas output are: `#14315 |
| 116 | +<https://github.com/scikit-learn/scikit-learn/pull/14315>`__, `#20100 |
| 117 | +<https://github.com/scikit-learn/scikit-learn/pull/20100>`__, and `#23001 |
| 118 | +<https://github.com/scikit-learn/scikit-learn/issueas/23001>`__. This SLEP |
| 119 | +proposes configuring the output to be pandas because it is the DataFrame library |
| 120 | +that is most widely used and requested by users. The ``set_output`` can be |
| 121 | +extended to support support additional DataFrame libraries in the future. |
| 122 | + |
| 123 | +References and Footnotes |
| 124 | +------------------------ |
| 125 | + |
| 126 | +.. [1] Each SLEP must either be explicitly labeled as placed in the public |
| 127 | + domain (see this SLEP as an example) or licensed under the `Open Publication |
| 128 | + License`_. |
| 129 | +
|
| 130 | +.. _Open Publication License: https://www.opencontent.org/openpub/ |
| 131 | + |
| 132 | + |
| 133 | +Copyright |
| 134 | +--------- |
| 135 | + |
| 136 | +This document has been placed in the public domain. [1]_ |
0 commit comments